• 제목/요약/키워드: Charge density

검색결과 1,127건 처리시간 0.03초

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory

  • Kim, Ji-Su;Kim, Yeong-Cheol
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.301-305
    • /
    • 2016
  • We investigate proton conduction in a nonstoichiometric ${\Sigma}3$ $BaZrO_3$ (210)[001] tilt grain boundary using density functional theory (DFT). We employ the space charge layer (SCL) and structural disorder (SD) models with the introduction of protons and oxygen vacancies into the system. The segregation energies of proton and oxygen vacancy are determined as -0.70 and -0.54 eV, respectively. Based on this data, we obtain a Schottky barrier height of 0.52 V and defect concentrations at 600K, in agreement with the reported experimental values. We calculate the energy barrier for proton migration across the grain boundary core as 0.61 eV, from which we derive proton mobility. We also obtain the proton conductivity from the knowledge of proton concentration and mobility. We find that the calculated conductivity of the nonstoichiometric grain boundary is similar to those of the stoichiometric ones in the literature.

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon;Choi, Kwang-Sik;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권7호
    • /
    • pp.959-964
    • /
    • 2004
  • A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

Supercapacitor용 활성탄 전극의 전기 화학적 특성 (Electrochemical Characteristics of Activated Carbon Electrode for Supercapacitor)

  • 김경민;이용욱;강안수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2002년도 추계학술대회
    • /
    • pp.273-277
    • /
    • 2002
  • In the electrode fabrication of unit cell, we found that optimal the electrochemical characteristics were obtained with at 90 wt.% of activated carbon(BP-20), 5 wt.% of conducting agent(Ppy, Super P) and 5 wt.% of P(VdF-co-HFP)/PVP mixed binder. The electrochemical characteristics of unit cell with Ppy improver were as follows : 37.6 F/g of specific capacitance, 0.98 $\Omega$ of AC-ESR, 2.92 Wh/kg and 6.05 Wh/L of energy density, and 754 W/kg and 1,562 W/L of power density. It was confirmed that internal resistance were reduced due to the increase of electrical conductivity and filling density by the introduction of conductivity agent, and content of conducting agent was suitable in the range of 4~6 wt.%. According to the impedance measurement of the electrode with conductivity agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance(AC-ESR), fast charge transfer rate at interface between electrode and electrolyte, and low RC time constant.

  • PDF

Space Charge Behavior of Oil-Impregnated Paper Insulation Aging at AC-DC Combined Voltages

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.635-642
    • /
    • 2014
  • The space charge behaviors of oil-paper insulation affect the stability and security of oil-filled converter transformers of traditional and new energies. This paper presents the results of the electrical aging of oil-impregnated paper under AC-DC combined voltages by the pulsed electro-acoustic technique. Data mining and feature extractions were performed on the influence of electrical aging on charge dynamics based on the experiment results in the first stage. Characteristic parameters such as total charge injection and apparent charge mobility were calculated. The influences of electrical aging on the trap energy distribution of an oil-paper insulation system were analyzed and discussed. Longer electrical aging time would increase the depth and energy density of charge trap, which decelerates the apparent charge mobility and increases the probability of hot electron formation. This mechanism would accelerate damage to the cellulose and the formation of discharge channels, enhance the acceleration of the electric field distortion, and shorten insulation lifetime under AC-DC combined voltages.

유동 대전된 절연유의 제전 방식중 침전극 삽입의 영향(II) (The Effect of Needle Electrode in the Static Charge Elimination Methods for Streaming-Electrification Insulating Oil)

  • 조영규;김용운;임현찬;김두석;신용덕;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.624-626
    • /
    • 1993
  • The Electrical Charge generated by friction in flowing insulating oil can create hazadous accidents. Neutralization of static charges in the oil during transportation is an obvious method of overcoming the problem of internal electric charge. It is known that SCR(Static Charge Reducer) can neutralize much of this charge by the needle electrode and mixing it with the original charge. In our experiment, a filter to generate static charge was set just befor a measurement pipe, and streaming current from the filter to the earth $I_s$, current from the electrode to the earth $I_e$ and current from the receiving tank to the earth $I_f$ were measured in a steady state. As a result, charge density and needle electrode current increases with increasing of oil temperature. Charge elimination rate decreases with increasing of oil flow rate, and increases with increases of oil temperature. Faraday Cage current decreases with increasing of oil temperature.

  • PDF

A New Charge Analysis Derived From the Results of Semi-Emprical Mo-Lcao Calculation

  • Yilmaz, Hayriye;Ceyhan, Emre Cahit;Guzel, Yahya
    • 대한화학회지
    • /
    • 제56권2호
    • /
    • pp.195-200
    • /
    • 2012
  • In this study we present a new approach for computing the partial atomic charge derived from the wavefunctions of molecules. This charge, which we call the "y_charge", was calculated by taking into account the energy level and orbital populations in each molecular orbital (MO). The charge calculations were performed in the software, which was developed by us, developed using the C# programming language. Partial atomic charges cannot be calculated directly from quantum mechanics. According to a partitioning function, the electron density of constituent molecular atoms depends on the electrostatic attraction field of the nucleus. Taking into account the Boltzmann population of each MO as a function of its energy and temperature we obtain a formula of partial charges.

Characterizations of Membrane for Water Treatment: Surface Charge Analysis by Electrophoresis and Acidity Measurements

  • Yongki Shim;Lee, Sangyoup;Moon, Seung-Hyeon;Jaeweon Cho
    • Korean Membrane Journal
    • /
    • 제2권1호
    • /
    • pp.56-59
    • /
    • 2000
  • The surface charge properties of a polymeric NF and a ceramic UF membranes were characterized in terms of zeta potential and acidity. Both the negative zeta potential and acidity values increased as pH increases due to ionizable acidic functional groups. Increased ionic strength reduced the acidity of the negatively-charged membrane surface as anticipated. Through these results, it can be envisioned are used to reject solutes with ionizable functional groups. Fouling of the negatively-charged membrane with natural organic matter (NOM) having a negative charge density was also investigated with respect to the surface charge. The surface charge of the NF membrane increased negatively when greater NOM adsorption onto the membrane surface occured.

  • PDF

전기집진에서의 난류 입자 이산 (Turbulent Particle Dispersion Effects on Electrostatic Precipitation)

  • 최범석
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

Computational Study on the Dependence of Electronic Transition Energies of Porphin, Chlorin, Mg-Chlorin and Chlorophyll a on an External Charge

  • Kwon, Jang Sook;Yang, Mino
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.453-459
    • /
    • 2013
  • In phtosynthetic light harvesting complexes, the electronic transition energies of chlorophylls are influenced by the Coulombic interaction with nearby molecules. Variation of the interactions caused by structural inhomogeneity in biological environment results in a distribution of disordered electronic transition energies of chlorophylls. In order to provide a practical guide to predict qualitative tendency of such distribution, we model four porphyrin derivatives including chlorophyll a molecule interacting with an external positive charge and calculate their transition energies using the time dependent density functional method. It is found that ${\pi}-{\pi}^*$ transition energies of the molecules are generally blue-shifted by the charge because this stabilizes occupied molecular orbitals to a greater extent than unoccupied ones. Furthermore, new transitions in the visible region emerge as a result of the red-shift in energy of an unoccupied Mg orbital and it is suggested that light-induced electron transfer may occur from the tetrapyrrole ring to the central magnesium when the molecules are interacting with a positive charge.