Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.3.301

Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory  

Kim, Ji-Su (School of Energy Materials and Chemical Engineering, KoreaTech)
Kim, Yeong-Cheol (Materials Research Center, KoreaTech)
Publication Information
Abstract
We investigate proton conduction in a nonstoichiometric ${\Sigma}3$ $BaZrO_3$ (210)[001] tilt grain boundary using density functional theory (DFT). We employ the space charge layer (SCL) and structural disorder (SD) models with the introduction of protons and oxygen vacancies into the system. The segregation energies of proton and oxygen vacancy are determined as -0.70 and -0.54 eV, respectively. Based on this data, we obtain a Schottky barrier height of 0.52 V and defect concentrations at 600K, in agreement with the reported experimental values. We calculate the energy barrier for proton migration across the grain boundary core as 0.61 eV, from which we derive proton mobility. We also obtain the proton conductivity from the knowledge of proton concentration and mobility. We find that the calculated conductivity of the nonstoichiometric grain boundary is similar to those of the stoichiometric ones in the literature.
Keywords
Proton conduction; Nonstoichiometric grain boundary; Density functional theory; Space charge layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Takahashi and H. Iwahara, "Proton Conduction in Perovskite Type Oxide Solid Solution," Rev. Chim. Miner., 17 243-53 (1980).
2 H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton Conduction in Sintered Oxide and its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4 359-63 (1981).   DOI
3 K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003).   DOI
4 T. Norby and Y. Larring, "Concentration and Transport of Protons in Oxides," Curr. Opin. Solid State Mater. Sci., 2 [5] 593-99 (1997).   DOI
5 F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, "Microstructures and Grain Boundary Conductivity of $BaZr_{1-x}Y_xO_3$ (x = 0.05, 0.10, 0.15) Ceramics," Solid State Ionics, 178 [7] 691-95 (2007).   DOI
6 P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007).   DOI
7 S. B. C. Duval, P. Holtappels, U. F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, "Electrical Conductivity of the Proton Conductor $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ Obtained by High Temperature Annealing," Solid State Ionics, 178 [25] 1437-41 (2007).   DOI
8 C. Kjolseth, H. Fjeld, O. Prytz, P. I. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5] 268-75 (2010).   DOI
9 E. E. Helgee, A. Lindman, and G. Wahnstrom, "Origin of Space Charge in Grain Boundaries of Proton-Conducting $BaZrO_3$," Fuel Cells, 13 [1] 19-28 (2013).   DOI
10 J. M. Polfus, K. Toyoura, F. Oba, I. Tanaka, and R. Haugsrud, "Defect Chemistry of a $BaZrO_3$ ${\Sigma}3$ (111) Grain Boundary by First Principles Calculations and Space-Charge Theory," Phys. Chem. Chem. Phys., 14 [35] 12339-46 (2012).   DOI
11 A. Lindman, E. E. Helgee, J. Nyman, and G.Wahnstrom, "Oxygen Vacancy Segregation in Grain Boundaries of $BaZrO_3$ Using Interatomic Potentials," Solid State Ionics, 230 27-31 (2013).   DOI
12 B. J. Nyman, E. E. Helgee, and G. Wahnstrom, "Oxygen Vacancy Segregation and Space-Charge Effects in Grain Boundaries of Dry and Hydrated $BaZrO_3$," Appl. Phys. Lett., 100 [6] 061903 (2012).   DOI
13 J.-H. Yang, D.-H. Kim, B.-K. Kim, and Y.-C. Kim, "Calculation of Proton Conductivity at the ${\Sigma}3(111)/[1{\overline{1}}0]$ Tilt Grain Boundary of Barium Zirconate Using Density Functional Theory," Solid State Ionics, 279 60-5 (2015).   DOI
14 M.-Y. Kim, G. Duscher, N. D. Browning, K. Sohlberg, S. T. Pantelides, and S. J. Pennycook, "Nonstoichiometry and the Electrical Activity of Grain Boundaries in $SrTiO_3$," Phys. Rev. Lett., 86 [18] 184056-59 (2001).
15 S.-Y. Choi, S. Joong, L. Kang, S.-Y. Chung, T. Yamamoto, and Y. Ikuhara, "Change in Cation Nonstoichiometry at Interfaces during Crystal Growth in Polycrystalline $BaTiO_3$," App. Phys. Lett., 88 [1] 011909-3 (2006).   DOI
16 G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).   DOI
17 J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim, "Study of ${\Sigma}3$ $BaZrO_3$ (210)[001] Tilt Grain Boundaries Using Density Functional Theory and a Space Charge Layer Model," J. Ceram. Soc. Jpn., 123 [4] 245-49 (2015).   DOI
18 G. Kresse and J. Hafner, "Ab initio Molecular Dynamics for Liquid Metals," Phys. Rev. B, 47 558-61 (1993).   DOI
19 G. Kresse, Ab initio Molekular Dynamik fur flussige Metalle, in Ph.D. Thesis, Technische Universität Wien, Wien, 1993.
20 G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996).   DOI
21 G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B, 59 [3] 1758-75 (1999).
22 P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953-79 (1994).   DOI
23 J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996).   DOI
24 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U study," Phys. Rev. B, 57 [3] 1505-9 (1998).   DOI
25 V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, "Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation: Fitted Elemental-Phase Reference Energies," Phys. Rev. B, 85 [11] 115104-12 (2012).   DOI
26 K. Momma and F. Izumi, "VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis," J. Appl. Cryst., 41 [3] 653-58 (2008).   DOI
27 H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976).   DOI
28 W. Tang, E. Sanville, and G. Henkelman, "A Grid-based Bader Analysis Algorithm without Lattice Bias," J. Phys.: Condens. Matter, 21 [8] 084204 (2009).   DOI
29 G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000).   DOI
30 S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. Kobayashi, and K. Kurosaki, "Heat Capacities and Thermal Conductivities of Perovskite Type $BaZrO_3$ and $BaCeO_3$," J. Alloys Compd., 359 [1] 1-4 (2003).   DOI
31 R. A. De Souza, "The Formation of Equilibrium Space-Charge Zones at Grain Boundaries in the Perovskite Oxide $SrTiO_3$," Phys. Chem. Chem. Phys., 11 [43] 9939-69 (2009).   DOI
32 H. G. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
33 M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher and L. E. Fernandez, "The Effect of Yttrium Dopant on the Proton Conduction Pathways of $BaZrO_3$, a Cubic Perovskite," J. Chem. Phys., 132 [21] 214709 (2010).   DOI