• Title/Summary/Keyword: Charge Transport Mechanism

Search Result 59, Processing Time 0.027 seconds

Charge Transport Phenomena of Polyaniline-DBSA/Polystyrene Blends (폴리 아닐 린-DBSA/폴리스타이렌 블렌드의 전하 이동 현상)

  • 김원중;김태영;고정우;김윤상;박창모;서광석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.305-311
    • /
    • 2004
  • Charge transport phenomena of polyaniline-DBSA/High Impact Polystyrene (PAM-DBSA/HIPS) blends have been studied through an examination of electrical conduction. HIPS used host polymer in the blends and PANI-DBSA obey a space charge limited conduction mechanism and a ohmic conduction mechanism respectively. However, PANI-DBSA/HIPS blends do not obey any classical conduction mechanism. Analysis of conduction mechanism revealed that the charging current of PANI-DBSA/HIPS blends increased with the increase of PANI-DBSA content. This result migrlt be explained by the reduction in the distance between PANI-DBSA particles enabling the charge carriers to migrate from a chain to a neighboring chain via hopping or micro tunneling. It was also found that the charging current of PANI-DBSA/HIPS blends decreased as the temperature was elevated, which is of typical phenomena in metals. It is speculated that the charge transport in PANI-DBSA particle was somewhat constrained due to strong phonon scattering.

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

Electrical Drift Mobility in the Cholesteryl Benzoate (Cholestric 액정 Cholesteryl Benzoate에서 Drift Mobility측정)

  • 강태원;김화택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.2
    • /
    • pp.19-21
    • /
    • 1978
  • The electrical drift mobility of charge carrier of Cholesteryl Benzoate was measured by Polarity inversion method in the temperature range 140~ 185$^{\circ}C$. with a view to revealing the mechanism of charge carrier transport. The electrical drift mobility of charge carrier of that increased from 2.5$\times$10-7$\textrm{cm}^2$/V.sec to 2.0$\times$10-6$\textrm{cm}^2$/v.sec as the temperature increased. As a result of the experiment, the mechanism of current transport is believed to be ionic mechanism.

  • PDF

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

Environment Dependent Coherence of a Short DNA Charge Transfer System

  • Kim, Hee-Young;Lee, Myeong-Won;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.607-612
    • /
    • 2007
  • Relationship between charge transfer mechanism and quantum coherence has been investigated using a realtime quantum dynamics approach. In the on-the-fly filtered propagator functional path integral simulation, by separating paths that belong to different mechanisms and by integrating contributions of correspondingly sorted paths, it was possible to accurately obtain quantitative contribution of different transport mechanisms. For a 5'-GAGGG-3' DNA sequence, we analyze charge transfer processes quantitatively such that the governing mechanism alters from coherent to incoherent charge transfer with respect to the friction strength arising from dissipative environments. Although the short DNA sequence requires substantially strong dissipation for completely incoherent hopping transfer mechanism, even a weak system-environment interaction markedly destroys the coherence within the quantum mechanical system and the charge transfer dynamics becomes incoherent to some degree. Based on the forward-backward path deviation analysis, the coherence variation depending on the environment is investigated numerically.

Time of Fight Resonace Investigation of Amorphous Selenium Films (비정질 셀레늄 필름의 공명 비행시간 조사)

  • Park, J.K.;Park, S.K.;Lee, D.G.;Choi, J.Y.;Ahn, S.H.;Eun, C.K.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyze transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-flight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 400 ${\mu}m$ thickness on coming glass using thermoevaporation method and built Au electrode with 300nm, $2{\varphi}$ on both sides of a-Se, As a result of this experiment, electron and hole transit time was each $229.17{\mu}s$ and $8.73{\mu}s$ at $10V/{\mu}m$ electric field and Drift mobility was each $0.00174 cm^{2}/V{\cdot}s$, $0.04584cm^{2}/V{\cdot}s$.

  • PDF

Time of Flight Resonace Investigation of Amorphous Selenium Films (비정질 셀레늄 필름의 공명 비행시간 조사)

  • 박지군;박성광;이동길;최장용;안상호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyse transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-fight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 470 ${\mu}{\textrm}{m}$ thickness on corning glass using thermoevaporation method and built Au electrode with 300nm, 2$\phi$ on both sides of a-Se. As a result of this experiment, electron and hole transit time was each 229.17 $\mu$s and 8.737 $\mu$s at 10V/${\mu}{\textrm}{m}$ electric field and Drift mobility was each 0.00174 $\textrm{cm}^2$/V.s, 0.04584 $\textrm{cm}^2$/V.s.

  • PDF

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

Conduction mechanism in organic light-emitting diode in ITO/PEDOT/PSS/TPD/Alq$_3$/LiAl structure (ITO/PEDOT/PSS/TPD/Alq$_3$/LiAl 구조의 유기 발광 소자에서 전도 메카니즘)

  • 정동회;김상걸;정택균;오현석;이원재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.198-201
    • /
    • 2002
  • We have studied the temperature dependence of current-voltage and luminance-voltage characteristics of Organic Light Emitting Diodes(OLEDs). The OLEDS are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinoline) aluminum(III) (Alq$_3$) as an electron transport, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a buffer layer. The current-voltage and luminance-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs has been interpreted in terms of space-charge-limited current(SCLC) and tunneling mechanism.

  • PDF

Contact resistance in graphene channel transistors

  • Song, Seung Min;Cho, Byung Jin
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.162-170
    • /
    • 2013
  • The performance of graphene-based electronic devices is critically affected by the quality of the graphene-metal contact. The understanding of graphene-metal is therefore critical for the successful development of graphene-based electronic devices, especially field-effect-transistors. Here, we provide a review of the peculiar properties of graphene-metal contacts, including work function pinning, the charge transport mechanism, the impact of the process on the contract resistance, and other factors.