1 |
Shin WC, Kim TY, Sul O, Choa BJ. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly (4-vinylphenol) layer for enhanced device performance and reliability. Appl Phys Lett, 101, 033507 (2012). http://dx.doi.org/10.1063/1.4737645.
DOI
ScienceOn
|
2 |
Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nat Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6.
DOI
|
3 |
Moon JS, Antcliffe M, Seo HC, Curtis D, Lin S, Schmitz A, Milosavljevic I, Kiselev AA, Ross RS, Gaskill DK, Campbell PM, Fitch RC, Lee KM, Asbeck P. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 100, 203512 (2012). http://dx.doi.org/10.1063/1.4719579.
DOI
ScienceOn
|
4 |
Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with self-aligned gates. Appl Phys Lett, 97, 013103 (2010). http://dx.doi.org/10.1063/1.3459972.
DOI
ScienceOn
|
5 |
Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2010). http://dx.doi.org/10.1021/nl1033842.
DOI
ScienceOn
|
6 |
Nagashio K, Nishimura T, Kita K, Toriumi A. Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424297.
DOI
|
7 |
Blake P, Yang R, Morozov S, Schedin F, Ponomarenko L, Zhukov A, Nair R, Grigorieva I, Novoselov K, Geim A. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun, 149, 1068 (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.039.
DOI
ScienceOn
|
8 |
Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183.
DOI
ScienceOn
|
9 |
Xia F, Farmer DB, Lin Y, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett, 10, 715 (2010). http://dx.doi.org/10.1021/nl9039636.
DOI
ScienceOn
|
10 |
Russo S, Craciun M, Yamamoto M, Morpurgo A, Tarucha S. Contact resistance in graphene-based devices. Physica E, 42, 677 (2010). http://dx.doi.org/10.1016/j.physe.2009.11.080.
DOI
ScienceOn
|
11 |
Venugopal A, Colombo L, Vogel E. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 96, 013512 (2010). http://dx.doi.org/10.1063/1.3290248.
DOI
ScienceOn
|
12 |
Nagashio K, Nishimura T, Kita K, Toriumi A. Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett, 97, 143514 (2010). http://dx.doi.org/10.1063/1.3491804.
DOI
ScienceOn
|
13 |
Schwierz F. Graphene transistors. Nat Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89.
DOI
ScienceOn
|
14 |
Leonard F, Talin AA. Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol, 6, 773 (2011). http://dx.doi.org/10.1038/nnano.2011.196.
DOI
ScienceOn
|
15 |
Giovannetti G, Khomyakov P, Brocks G, Karpan V, Van den Brink J, Kelly P. Doping graphene with metal contacts. Phys Rev Lett, 101, 26803 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.026803.
DOI
ScienceOn
|
16 |
Khomyakov P, Starikov A, Brocks G, Kelly P. Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B, 82, 115437 (2010). http://dx.doi.org/10.1103/PhysRevB.82.115437.
DOI
ScienceOn
|
17 |
Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a.
DOI
ScienceOn
|
18 |
Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 9, 1039 (2009). http://dx.doi.org/10.1021/nl8033812.
DOI
ScienceOn
|
19 |
Yan L, Punckt C, Aksay IA, Mertin W, Bacher G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett, 11, 3543 (2011). http://dx.doi.org/10.1021/nl201070c.
DOI
ScienceOn
|
20 |
Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nat Nanotechnol, 3, 486 (2008). http://dx.doi.org/10.1038/nnano.2008.172.
DOI
ScienceOn
|
21 |
Mueller T, Xia F, Freitag M, Tsang J, Avouris P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys Rev B, 79, 245430 (2009). http://dx.doi.org/10.1103/PhysRevB.79.245430.
DOI
ScienceOn
|
22 |
Knoch J, Chen Z, Appenzeller J. Properties of metal-graphene contacts. IEEE Trans Nanotechnol, 11, 513 (2011). http://dx.doi.org/10.1109/TNANO.2011.2178611.
DOI
ScienceOn
|
23 |
Low T, Hong S, Appenzeller J, Datta S, Lundstrom MS. Conductance asymmetry of graphene pn junction. IEEE Trans Electron Devices, 56, 1292 (2009). http://dx.doi.org/10.1109/TED.2009.2017646.
DOI
ScienceOn
|
24 |
Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys, 50, 070108 (2011). http://dx.doi.org/10.1143/jjap.50.070108.
DOI
|
25 |
Nouchi R, Tanigaki K. Charge-density depinning at metal contacts of graphene field-effect transistors. Appl Phys Lett, 96, 253503 (2010). http://dx.doi.org/10.1063/1.3456383.
DOI
ScienceOn
|
26 |
Huard B, Stander N, Sulpizio J, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402.
DOI
ScienceOn
|
27 |
Ran Q, Gao M, Guan X, Wang Y, Yu Z. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts. Appl Phys Lett, 94, 103511 (2009). http://dx.doi.org/10.1063/1.3095438.
DOI
ScienceOn
|
28 |
Chen Z, Appenzeller J. Gate modulation of graphene contacts-on the scaling of graphene FETs. Symposium on VLSI Technology, Honolulu, HI, 128 (2009).
|
29 |
Song SM, Park JK, Sul OJ, Cho BJ. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett, 12, 3887 (2012). http://dx.doi.org/10.1021/nl300266p.
DOI
ScienceOn
|
30 |
Wang QJ, Che JG. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys Rev Lett, 103, 66802 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.066802.
DOI
ScienceOn
|
31 |
Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS. Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Devices, 58, 3925 (2011). http://dx.doi.org/10.1109/TED.2011.2163800.
DOI
ScienceOn
|
32 |
Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2008). http://dx.doi.org/10.1021/nl803214a.
DOI
ScienceOn
|
33 |
Grosse KL, Bae MH, Lian F, Pop E, King WP. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts. Nat Nanotechnol, 6, 287 (2011). http://dx.doi.org/10.1038/nnano.2011.39.
DOI
|
34 |
Xu HT, Wang S, Zhang ZY, Wang ZX, Xu HL, Peng LM. Contact length scaling in graphene field-effect transistors. Appl Phys Lett, 100, 103501 (2012). http://dx.doi.org/10.1063/1.3691629.
DOI
ScienceOn
|
35 |
Murrmann H, Widmann D. Current crowding on metal contacts to planar devices. IEEE Trans Electron Devices, 16, 1022 (1969). http://dx.doi.org/10.1109/T-ED.1969.16904.
DOI
ScienceOn
|
36 |
Song SM, Cho BJ. Investigation of interaction between graphene and dielectrics. Nanotechnology, 21, 335706 (2010). http://dx.doi.org/10.1088/0957-4484/21/33/335706.
DOI
ScienceOn
|
37 |
Cheianov VV, Fal'ko VI. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys Rev B, 74, 041403 (2006). http://dx.doi.org/10.1103/Physrevb.74.041403.
DOI
ScienceOn
|
38 |
Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). http://dx.doi.org/10.1038/Nphys384.
DOI
|
39 |
Matsuda Y, Deng WQ, Goddard WA. Contact resistance for "end-contacted" metal- graphene and metal- nanotube interfaces from quantum mechanics. J Phys Chem C, 114, 17845 (2010). http://dx.doi.org/10.1021/jp806437y.
DOI
ScienceOn
|
40 |
Oh JG, Shin YS, Shin WC, Sul OJ, Cho BJ. Dirac voltage tunability by gate dielectric composition modulation for graphene field effect devices. Appl Phys Lett, 99, 193503 (2011). http://dx.doi.org/10.1063/1.3659691.
DOI
ScienceOn
|
41 |
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J, Von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 4, 144 (2007). http://dx.doi.org/10.1038/nphys781.
DOI
|
42 |
Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF. Origin of spatial charge inhomogeneity in graphene. Nat Phys, 5, 722 (2009). http://dx.doi.org/10.1038/nphys1365.
DOI
|
43 |
Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem, 21, 3335 (2011). http://dx.doi.org/10.1039/C0JM02922J.
DOI
ScienceOn
|
44 |
Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett, 11, 132 (2010). http://dx.doi.org/10.1021/nl103015w.
DOI
ScienceOn
|
45 |
Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, Mc-Donnell S, Colombo L, Vogel E, Ruoff R, Wallace R. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to . Appl Phys Lett, 99, 122108 (2011). http://dx.doi.org/10.1063/1.3643444.
DOI
ScienceOn
|
46 |
Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). http://dx.doi.org/10.1063/1.2818692.
DOI
ScienceOn
|
47 |
Berciaud S, Ryu S, Brus LE, Heinz TF. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett, 9, 346 (2008). http://dx.doi.org/10.1021/nl8031444.
DOI
ScienceOn
|
48 |
Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, Klitzing K, Smet JH. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett, 10, 1149 (2010). http://dx.doi.org/10.1021/nl903162a.
DOI
ScienceOn
|
49 |
Lin YC, Lu CC, Yeh CH, Jin C, Suenaga K, Chiu PW. Graphene annealing: how clean can it be? Nano Lett, 12, 414 (2011). http://dx.doi.org/10.1021/nl203733r.
DOI
ScienceOn
|
50 |
Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett, 11, 767 (2011). http://dx.doi.org/10.1021/nl103977d.
DOI
ScienceOn
|
51 |
Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 5, 722 (2010). http://dx.doi.org/10.1038/nnano.2010.172.
DOI
|
52 |
Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 10, 282 (2011). http://dx.doi.org/10.1038/nmat2968.
DOI
ScienceOn
|
53 |
Choi MS, Lee SH, Yoo WJ. Plasma treatments to improve metal contacts in graphene field effect transistor. J Appl Phys, 110, 073305 (2011). http://dx.doi.org/10.1063/1.3646506.
DOI
ScienceOn
|
54 |
Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z, Wu Q, Gannett W, Zettl A, Crommie MF. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett, 11, 2291 (2011). http://dx.doi.org/10.1021/nl2005115.
DOI
ScienceOn
|
55 |
Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in silicon-based semiconductor devices. Nature, 479, 338 (2011). http://dx.doi.org/10.1038/nature10680.
DOI
ScienceOn
|
56 |
Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D. Contacting graphene. Appl Phys Lett, 98, 053103 (2011). http://dx.doi.org/10.1063/1.3549183.
DOI
ScienceOn
|
57 |
Liu W, Li M, Xu S, Zhang Q, Zhu Y, Pey K, Hu H, Shen Z, Zou X, Wang J. Understanding the contact characteristics in single or multi-layer graphene devices: the impact of defects (carbon vacancies) and the asymmetric transportation behavior. IEEE International Electron Devices Meeting, San Francisco, CA, 23.3.1 (2010). http://dx.doi.org/10.1109/IEDM.2010.5703420.
DOI
|
58 |
Matsubara K, Sugihara K, Tsuzuku T. Electrical-resistance in the C-direction of graphite. Phys Rev B, 41, 969 (1990). http://dx.doi.org/10.1103/PhysRevB.41.969.
DOI
ScienceOn
|
59 |
Khatami Y, Li H, Xu C, Banerjee K. Metal-to-multilayer-graphene contact-Part I: Contact resistance modeling. IEEE Trans Electron Devices, 59, 2444 (2012). http://dx.doi.org/10.1109/TED.2012.2205256.
DOI
ScienceOn
|
60 |
Franklin AD, Han SJ, Bol AA, Perebeinos V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett, 33, 17 (2012). http://dx.doi.org/10.1109/Led.2011.2173154.
DOI
ScienceOn
|
61 |
Lin YM, Chiu HY, Jenkins KA, Farmer DB, Avouris P, Valdes-Garcia A. Dual-gate graphene FETs with f(T) of 50 GHz. IEEE Electron Device Lett, 31, 68 (2010). http://dx.doi.org/10.1109/led.2009.2034876.
DOI
ScienceOn
|
62 |
Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD. Reducing contact resistance in graphene devices through contact area patterning. ACS Nano, 7, 3661 (2013). http://dx.doi.org/10.1021/nn400671z.
DOI
ScienceOn
|
63 |
Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field-effect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/Led.2007.891668.
DOI
ScienceOn
|
64 |
Meric I, Baklitskaya N, Kim P, Shepard KL. RF performance of top-gated, zero-bandgap graphene field-effect transistors. IEEE International Electron Devices Meeting, San Francisco, CA, 1 (2008). http://dx.doi.org/10.1109/IEDM.2008.4796738.
DOI
|
65 |
Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P. Operation of graphene transistors at gigahertz frequencies. Nano Lett, 9, 422 (2009). http://dx.doi.org/10.1021/Nl803316h.
DOI
ScienceOn
|
66 |
Lin YM, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung CY, Chiu HY, Ek B. Development of graphene FETs for high frequency electronics. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424378.
DOI
|
67 |
Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia FN, Avouris P. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 9, 4474 (2009). http://dx.doi.org/10.1021/Nl902788u.
DOI
ScienceOn
|
68 |
Dimitrakopoulos C, Lin YM, Grill A, Farmer DB, Freitag M, Sun YN, Han SJ, Chen ZH, Jenkins KA, Zhu Y, Liu ZH, McArdle TJ, Ott JA, Wisnieff R, Avouris P. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol, B, 28, 985 (2010). http://dx.doi.org/10.1116/1.3480961.
DOI
|
69 |
Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.
DOI
ScienceOn
|
70 |
Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors. Appl Phys Lett, 97, 173106 (2010). http://dx.doi.org/10.1063/1.3506506.
DOI
ScienceOn
|
71 |
Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405.
DOI
ScienceOn
|
72 |
Chauhan J, Guo J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res, 4, 571 (2011). http://dx.doi.org/10.1007/s12274-011-0113-1.
DOI
|
73 |
Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74 (2011). http://dx.doi.org/10.1038/nature09979.
DOI
ScienceOn
|
74 |
Das S, Appenzeller J. An all-graphene radio frequency low noise amplifier. IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 1 (2011). http://dx.doi.org/10.1109/RFIC.2011.5940628.
DOI
|
75 |
Koswatta SO, Valdes-Garcia A, Steiner MB, Lin YM, Avouris P. Ultimate RF potential of carbon electronics. IEEE Trans Microwave Theory Tech, 59, 2739 (2011). http://dx.doi.org/10.1109/tmtt.2011.2150241.
DOI
ScienceOn
|
76 |
Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074.
DOI
ScienceOn
|
77 |
Badmaev A, Che YC, Li Z, Wang C, Zhou CW. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano, 6, 3371 (2012). http://dx.doi.org/10.1021/Nn300393c.
DOI
ScienceOn
|
78 |
Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci U S A, 109, 11588 (2012). http://dx.doi.org/10.1073/pnas.1205696109.
DOI
|
79 |
Wu YQ, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, Dimitrakopoulos C, Zhu WJ, Xia FN, Avouris P, Lin YM. State-of-the-art graphene high-frequency electronics. Nano Lett, 12, 3062 (2012). http://dx.doi.org/10.1021/Nl300904k.
DOI
ScienceOn
|
80 |
Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett, 94, 062107 (2009). http://dx.doi.org/10.1063/1.3077021.
DOI
ScienceOn
|