Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.162

Contact resistance in graphene channel transistors  

Song, Seung Min (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Cho, Byung Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 162-170 More about this Journal
Abstract
The performance of graphene-based electronic devices is critically affected by the quality of the graphene-metal contact. The understanding of graphene-metal is therefore critical for the successful development of graphene-based electronic devices, especially field-effect-transistors. Here, we provide a review of the peculiar properties of graphene-metal contacts, including work function pinning, the charge transport mechanism, the impact of the process on the contract resistance, and other factors.
Keywords
graphene; contact resistance; work function; charge transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shin WC, Kim TY, Sul O, Choa BJ. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly (4-vinylphenol) layer for enhanced device performance and reliability. Appl Phys Lett, 101, 033507 (2012). http://dx.doi.org/10.1063/1.4737645.   DOI   ScienceOn
2 Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nat Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6.   DOI
3 Moon JS, Antcliffe M, Seo HC, Curtis D, Lin S, Schmitz A, Milosavljevic I, Kiselev AA, Ross RS, Gaskill DK, Campbell PM, Fitch RC, Lee KM, Asbeck P. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 100, 203512 (2012). http://dx.doi.org/10.1063/1.4719579.   DOI   ScienceOn
4 Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with self-aligned gates. Appl Phys Lett, 97, 013103 (2010). http://dx.doi.org/10.1063/1.3459972.   DOI   ScienceOn
5 Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2010). http://dx.doi.org/10.1021/nl1033842.   DOI   ScienceOn
6 Nagashio K, Nishimura T, Kita K, Toriumi A. Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424297.   DOI
7 Blake P, Yang R, Morozov S, Schedin F, Ponomarenko L, Zhukov A, Nair R, Grigorieva I, Novoselov K, Geim A. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun, 149, 1068 (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.039.   DOI   ScienceOn
8 Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183.   DOI   ScienceOn
9 Xia F, Farmer DB, Lin Y, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett, 10, 715 (2010). http://dx.doi.org/10.1021/nl9039636.   DOI   ScienceOn
10 Russo S, Craciun M, Yamamoto M, Morpurgo A, Tarucha S. Contact resistance in graphene-based devices. Physica E, 42, 677 (2010). http://dx.doi.org/10.1016/j.physe.2009.11.080.   DOI   ScienceOn
11 Venugopal A, Colombo L, Vogel E. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 96, 013512 (2010). http://dx.doi.org/10.1063/1.3290248.   DOI   ScienceOn
12 Nagashio K, Nishimura T, Kita K, Toriumi A. Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett, 97, 143514 (2010). http://dx.doi.org/10.1063/1.3491804.   DOI   ScienceOn
13 Schwierz F. Graphene transistors. Nat Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89.   DOI   ScienceOn
14 Leonard F, Talin AA. Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol, 6, 773 (2011). http://dx.doi.org/10.1038/nnano.2011.196.   DOI   ScienceOn
15 Giovannetti G, Khomyakov P, Brocks G, Karpan V, Van den Brink J, Kelly P. Doping graphene with metal contacts. Phys Rev Lett, 101, 26803 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.026803.   DOI   ScienceOn
16 Khomyakov P, Starikov A, Brocks G, Kelly P. Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B, 82, 115437 (2010). http://dx.doi.org/10.1103/PhysRevB.82.115437.   DOI   ScienceOn
17 Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a.   DOI   ScienceOn
18 Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 9, 1039 (2009). http://dx.doi.org/10.1021/nl8033812.   DOI   ScienceOn
19 Yan L, Punckt C, Aksay IA, Mertin W, Bacher G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett, 11, 3543 (2011). http://dx.doi.org/10.1021/nl201070c.   DOI   ScienceOn
20 Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nat Nanotechnol, 3, 486 (2008). http://dx.doi.org/10.1038/nnano.2008.172.   DOI   ScienceOn
21 Mueller T, Xia F, Freitag M, Tsang J, Avouris P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys Rev B, 79, 245430 (2009). http://dx.doi.org/10.1103/PhysRevB.79.245430.   DOI   ScienceOn
22 Knoch J, Chen Z, Appenzeller J. Properties of metal-graphene contacts. IEEE Trans Nanotechnol, 11, 513 (2011). http://dx.doi.org/10.1109/TNANO.2011.2178611.   DOI   ScienceOn
23 Low T, Hong S, Appenzeller J, Datta S, Lundstrom MS. Conductance asymmetry of graphene pn junction. IEEE Trans Electron Devices, 56, 1292 (2009). http://dx.doi.org/10.1109/TED.2009.2017646.   DOI   ScienceOn
24 Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys, 50, 070108 (2011). http://dx.doi.org/10.1143/jjap.50.070108.   DOI
25 Nouchi R, Tanigaki K. Charge-density depinning at metal contacts of graphene field-effect transistors. Appl Phys Lett, 96, 253503 (2010). http://dx.doi.org/10.1063/1.3456383.   DOI   ScienceOn
26 Huard B, Stander N, Sulpizio J, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402.   DOI   ScienceOn
27 Ran Q, Gao M, Guan X, Wang Y, Yu Z. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts. Appl Phys Lett, 94, 103511 (2009). http://dx.doi.org/10.1063/1.3095438.   DOI   ScienceOn
28 Chen Z, Appenzeller J. Gate modulation of graphene contacts-on the scaling of graphene FETs. Symposium on VLSI Technology, Honolulu, HI, 128 (2009).
29 Song SM, Park JK, Sul OJ, Cho BJ. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett, 12, 3887 (2012). http://dx.doi.org/10.1021/nl300266p.   DOI   ScienceOn
30 Wang QJ, Che JG. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys Rev Lett, 103, 66802 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.066802.   DOI   ScienceOn
31 Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS. Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Devices, 58, 3925 (2011). http://dx.doi.org/10.1109/TED.2011.2163800.   DOI   ScienceOn
32 Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2008). http://dx.doi.org/10.1021/nl803214a.   DOI   ScienceOn
33 Grosse KL, Bae MH, Lian F, Pop E, King WP. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts. Nat Nanotechnol, 6, 287 (2011). http://dx.doi.org/10.1038/nnano.2011.39.   DOI
34 Xu HT, Wang S, Zhang ZY, Wang ZX, Xu HL, Peng LM. Contact length scaling in graphene field-effect transistors. Appl Phys Lett, 100, 103501 (2012). http://dx.doi.org/10.1063/1.3691629.   DOI   ScienceOn
35 Murrmann H, Widmann D. Current crowding on metal contacts to planar devices. IEEE Trans Electron Devices, 16, 1022 (1969). http://dx.doi.org/10.1109/T-ED.1969.16904.   DOI   ScienceOn
36 Song SM, Cho BJ. Investigation of interaction between graphene and dielectrics. Nanotechnology, 21, 335706 (2010). http://dx.doi.org/10.1088/0957-4484/21/33/335706.   DOI   ScienceOn
37 Cheianov VV, Fal'ko VI. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys Rev B, 74, 041403 (2006). http://dx.doi.org/10.1103/Physrevb.74.041403.   DOI   ScienceOn
38 Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). http://dx.doi.org/10.1038/Nphys384.   DOI
39 Matsuda Y, Deng WQ, Goddard WA. Contact resistance for "end-contacted" metal- graphene and metal- nanotube interfaces from quantum mechanics. J Phys Chem C, 114, 17845 (2010). http://dx.doi.org/10.1021/jp806437y.   DOI   ScienceOn
40 Oh JG, Shin YS, Shin WC, Sul OJ, Cho BJ. Dirac voltage tunability by $Hf_1-_xLa_xO$ gate dielectric composition modulation for graphene field effect devices. Appl Phys Lett, 99, 193503 (2011). http://dx.doi.org/10.1063/1.3659691.   DOI   ScienceOn
41 Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J, Von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 4, 144 (2007). http://dx.doi.org/10.1038/nphys781.   DOI
42 Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF. Origin of spatial charge inhomogeneity in graphene. Nat Phys, 5, 722 (2009). http://dx.doi.org/10.1038/nphys1365.   DOI
43 Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem, 21, 3335 (2011). http://dx.doi.org/10.1039/C0JM02922J.   DOI   ScienceOn
44 Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett, 11, 132 (2010). http://dx.doi.org/10.1021/nl103015w.   DOI   ScienceOn
45 Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, Mc-Donnell S, Colombo L, Vogel E, Ruoff R, Wallace R. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$. Appl Phys Lett, 99, 122108 (2011). http://dx.doi.org/10.1063/1.3643444.   DOI   ScienceOn
46 Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). http://dx.doi.org/10.1063/1.2818692.   DOI   ScienceOn
47 Berciaud S, Ryu S, Brus LE, Heinz TF. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett, 9, 346 (2008). http://dx.doi.org/10.1021/nl8031444.   DOI   ScienceOn
48 Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, Klitzing K, Smet JH. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett, 10, 1149 (2010). http://dx.doi.org/10.1021/nl903162a.   DOI   ScienceOn
49 Lin YC, Lu CC, Yeh CH, Jin C, Suenaga K, Chiu PW. Graphene annealing: how clean can it be? Nano Lett, 12, 414 (2011). http://dx.doi.org/10.1021/nl203733r.   DOI   ScienceOn
50 Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett, 11, 767 (2011). http://dx.doi.org/10.1021/nl103977d.   DOI   ScienceOn
51 Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 5, 722 (2010). http://dx.doi.org/10.1038/nnano.2010.172.   DOI
52 Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 10, 282 (2011). http://dx.doi.org/10.1038/nmat2968.   DOI   ScienceOn
53 Choi MS, Lee SH, Yoo WJ. Plasma treatments to improve metal contacts in graphene field effect transistor. J Appl Phys, 110, 073305 (2011). http://dx.doi.org/10.1063/1.3646506.   DOI   ScienceOn
54 Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z, Wu Q, Gannett W, Zettl A, Crommie MF. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett, 11, 2291 (2011). http://dx.doi.org/10.1021/nl2005115.   DOI   ScienceOn
55 Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in silicon-based semiconductor devices. Nature, 479, 338 (2011). http://dx.doi.org/10.1038/nature10680.   DOI   ScienceOn
56 Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D. Contacting graphene. Appl Phys Lett, 98, 053103 (2011). http://dx.doi.org/10.1063/1.3549183.   DOI   ScienceOn
57 Liu W, Li M, Xu S, Zhang Q, Zhu Y, Pey K, Hu H, Shen Z, Zou X, Wang J. Understanding the contact characteristics in single or multi-layer graphene devices: the impact of defects (carbon vacancies) and the asymmetric transportation behavior. IEEE International Electron Devices Meeting, San Francisco, CA, 23.3.1 (2010). http://dx.doi.org/10.1109/IEDM.2010.5703420.   DOI
58 Matsubara K, Sugihara K, Tsuzuku T. Electrical-resistance in the C-direction of graphite. Phys Rev B, 41, 969 (1990). http://dx.doi.org/10.1103/PhysRevB.41.969.   DOI   ScienceOn
59 Khatami Y, Li H, Xu C, Banerjee K. Metal-to-multilayer-graphene contact-Part I: Contact resistance modeling. IEEE Trans Electron Devices, 59, 2444 (2012). http://dx.doi.org/10.1109/TED.2012.2205256.   DOI   ScienceOn
60 Franklin AD, Han SJ, Bol AA, Perebeinos V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett, 33, 17 (2012). http://dx.doi.org/10.1109/Led.2011.2173154.   DOI   ScienceOn
61 Lin YM, Chiu HY, Jenkins KA, Farmer DB, Avouris P, Valdes-Garcia A. Dual-gate graphene FETs with f(T) of 50 GHz. IEEE Electron Device Lett, 31, 68 (2010). http://dx.doi.org/10.1109/led.2009.2034876.   DOI   ScienceOn
62 Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD. Reducing contact resistance in graphene devices through contact area patterning. ACS Nano, 7, 3661 (2013). http://dx.doi.org/10.1021/nn400671z.   DOI   ScienceOn
63 Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field-effect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/Led.2007.891668.   DOI   ScienceOn
64 Meric I, Baklitskaya N, Kim P, Shepard KL. RF performance of top-gated, zero-bandgap graphene field-effect transistors. IEEE International Electron Devices Meeting, San Francisco, CA, 1 (2008). http://dx.doi.org/10.1109/IEDM.2008.4796738.   DOI
65 Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P. Operation of graphene transistors at gigahertz frequencies. Nano Lett, 9, 422 (2009). http://dx.doi.org/10.1021/Nl803316h.   DOI   ScienceOn
66 Lin YM, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung CY, Chiu HY, Ek B. Development of graphene FETs for high frequency electronics. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424378.   DOI
67 Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia FN, Avouris P. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 9, 4474 (2009). http://dx.doi.org/10.1021/Nl902788u.   DOI   ScienceOn
68 Dimitrakopoulos C, Lin YM, Grill A, Farmer DB, Freitag M, Sun YN, Han SJ, Chen ZH, Jenkins KA, Zhu Y, Liu ZH, McArdle TJ, Ott JA, Wisnieff R, Avouris P. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol, B, 28, 985 (2010). http://dx.doi.org/10.1116/1.3480961.   DOI
69 Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.   DOI   ScienceOn
70 Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors. Appl Phys Lett, 97, 173106 (2010). http://dx.doi.org/10.1063/1.3506506.   DOI   ScienceOn
71 Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405.   DOI   ScienceOn
72 Chauhan J, Guo J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res, 4, 571 (2011). http://dx.doi.org/10.1007/s12274-011-0113-1.   DOI
73 Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74 (2011). http://dx.doi.org/10.1038/nature09979.   DOI   ScienceOn
74 Das S, Appenzeller J. An all-graphene radio frequency low noise amplifier. IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 1 (2011). http://dx.doi.org/10.1109/RFIC.2011.5940628.   DOI
75 Koswatta SO, Valdes-Garcia A, Steiner MB, Lin YM, Avouris P. Ultimate RF potential of carbon electronics. IEEE Trans Microwave Theory Tech, 59, 2739 (2011). http://dx.doi.org/10.1109/tmtt.2011.2150241.   DOI   ScienceOn
76 Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074.   DOI   ScienceOn
77 Badmaev A, Che YC, Li Z, Wang C, Zhou CW. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano, 6, 3371 (2012). http://dx.doi.org/10.1021/Nn300393c.   DOI   ScienceOn
78 Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci U S A, 109, 11588 (2012). http://dx.doi.org/10.1073/pnas.1205696109.   DOI
79 Wu YQ, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, Dimitrakopoulos C, Zhu WJ, Xia FN, Avouris P, Lin YM. State-of-the-art graphene high-frequency electronics. Nano Lett, 12, 3062 (2012). http://dx.doi.org/10.1021/Nl300904k.   DOI   ScienceOn
80 Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett, 94, 062107 (2009). http://dx.doi.org/10.1063/1.3077021.   DOI   ScienceOn