Browse > Article

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material  

Han, Jung-Wook (Department of Chemistry, Konkuk University)
An, Jong-Deok (Department of Chemistry, Konkuk University)
Jana, R.N. (Department of Chemistry, Konkuk University)
Jung, Kyung-Na (Department of Chemistry, Konkuk University)
Do, Jung-Hwan (Department of Chemistry, Konkuk University)
Pyo, Seung-Moon (Department of Chemistry, Konkuk University)
Im, Chan (Department of Chemistry, Konkuk University)
Publication Information
Macromolecular Research / v.17, no.11, 2009 , pp. 894-900 More about this Journal
Abstract
This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.
Keywords
charge carrier photogeneration; hole transport; conjugated polymer; hybrid material; vanadium phosphate; photocurrent;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 P. Suresh, P. Balaraju, S. K. Sharma, M. S. Roy, and G. D. Sharma, Sol. Energ. Mater. Sol.Cell., 92, 900 (2008)   DOI   ScienceOn
2 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Materials, 4, 864 (2005)   DOI   ScienceOn
3 H. Jin, Y. Hou, F. Teng, P. Kopola, M. Tuomikoski, and A. Maaninen, Sol. Energ. Mater. Sol. Cell., 93, 289 (2009)   DOI   ScienceOn
4 Z. J. Wang, S. C. Qu, X. B. Zeng, J. P. Liu, C. S. Zhang, F. R. Tan, L. Jin, and Z. G. Wang, Appl. Surf. Sci., 255, 1916 (2008)   DOI   ScienceOn
5 S. H. Jin, J. M. Shim, S. J. Jung, S. C. Kim, B. V. K. Naidu, W. S. Shi, Y. S. Gal, J. W. Lee, J. H. Kim, and J. K. Lee, Macromol. Res., 14, 524 (2006)   DOI
6 J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, Org. Elec., 9, 396 (2008)   DOI   ScienceOn
7 D. P. West, M. D. Rahn, C. Im, and H. Bassler, Chem. Phys. Lett., 326, 407 (2000)   DOI   ScienceOn
8 I. G owacki, J. Jung, and J. Ulanski, Synth. Met., 109, 143 (2000)   DOI   ScienceOn
9 S. E. Watkins, K. L. Chan, S. Y. Cho, N. R. Evans, A. C. Grimsdale, A. B. Holmes, C. S. K. Mak, A. J. Sandee, and C. K. Williams, Macromol. Res., 15, 129(2007)   DOI
10 P. J. Reucroft and K. Takahashi, J. Non Cryst. Solids, 17, 71 (1975)   DOI   ScienceOn
11 V. Chasteen, J. O. Harter, G. Rumbles, J. C. Scott, Y. Nakazawa, M. Jones, H.-H H${\ddot{o}}$rhold, H. Tillman, and S. A. Carter, J. Appl. Phys., 99, 033709 (2006)   DOI   ScienceOn
12 P. A. C. Quist, T. Martens, J. V. Manca, T. J. Savenije, and L. D. A. Siebbeles, Sol. Energ. Mater. Sol. Cell., 90, 362 (2006)   DOI   ScienceOn
13 H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 16, 45 (2006)   DOI   ScienceOn
14 R. D. Willett, Acta Crystallogr., C46, 565 (1990)
15 D. M. Pai, J. F. Yanus, and M. Stolka, J. Phys. Chem., 88, 4714 (1984)   DOI
16 K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. De Silva, Chem. Mater., 11, 2474 (1999)   DOI   ScienceOn
17 S. Cho, J. K. Lee, J. S. Moon, J. Yuen, K. Lee, and A. J. Heeger, Org. Elec., 9, 1107 (2008)   DOI   ScienceOn
18 K. S. Narayan and G. L. Murthy, Chem. Phys. Lett., 276, 441 (1997)   DOI   ScienceOn
19 M. Y. Song, K. J. Kim, and D. Y. Kim, Macromol. Res., 14, 630 (2006)   DOI
20 S. Q. Min, H. Y. Bing, L. Yan, F. Z. Hui, and L. X. Jun, Chin. Phys. Lett., 26, 017202 (2009)   DOI   ScienceOn
21 H. K. Kim, S. G. Roh, K. S. Hong, J. W. Ka, N. S. Baek, J. B. Oh, M. K. Nah, Y. H. Cha, and J. Ko, Macromol. Res., 11, 133 (2003)   DOI   ScienceOn
22 C. Wang, Z. X. Guo, S. Fu, W. Wu, and D. Zhu, Prog. Polym. Sci., 29, 1079 (2004)   DOI   ScienceOn
23 H. J. Shim, D. W. Kim, C. Lee, and Y. Kang, Macromol. Res., 16, 424 (2008)   DOI
24 H. J. Chen, L. Y. Wang, and W. Y. Chiu, Mat. Chem. Phys., 112, 551 (2008)   DOI   ScienceOn
25 E. Stathatos, P. Lianos, V. Jovanovski, and B. Orel, J. Photochem. Photobiol. A: Chem., 169, 57 (2005)   DOI   ScienceOn
26 S. V. Chasteen, V. Sholin, S. A. Carter, and G. Rumbles, Sol. Energ. Mater. Sol. Cell., 92, 651 (2008)   DOI   ScienceOn
27 P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography, Marcel Dekker Inc., New York, 1998, p 459
28 H. Hoegl, G. Barchietto, and D. Tar, J. Photochem. Photobiol., 16, 335 (1972)
29 D. B. Mitzi, J. Solid State Chem., 145, 695 (1999)
30 S. Gunes, D. Baran, G. Gunbas, F. Ozyurt, A. Fuchsbauer, N. S. Sariciftci, and L. Toppare, Sol. Energ. Mater. Sol. Cell., 92, 1162 (2008)   DOI   ScienceOn
31 Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, Adv. Mater., 20, 3924 (2008)   DOI   ScienceOn
32 M. Wang, Y. Lian, and X. Wang, Curr. Appl. Phys., 9, 189 (2009)   DOI   ScienceOn
33 B. Reimer and H. B${\ddot{a}}$ssler, Phys. Status Solidi(a), 51, 445 (1979)   DOI   ScienceOn
34 C. Im, E. V. Emelianova, and H. B${\ddot{a}}$ssler, J. Chem. Phys., 117, 2961 (2002)   DOI   ScienceOn
35 G. D. Sharma, P. B. Raju, and M. S. Roy, Sol. Energ. Mater. Sol.Cell., 92, 261 (2008)   DOI   ScienceOn
36 C. W. Hsu, L. Wanga, and W. F. Su, J. Colloid Interf. Sci., 329, 182 (2009)   DOI   ScienceOn
37 J. C. Lee, W. Lee, S. H. Han, T. G. Kim, and Y. M. Sung, Electrochem. Comm., 11, 231 (2009)   DOI   ScienceOn
38 N. S. Sariciftci, D. Braun, C. Zhang, V. Srdranov, A. J. Heeger, and F. Wudl, Auul. Phys. Lett., 62, 585 (1993)   DOI
39 C. Girotto, D. Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T. J. Cleij, D. Vanderzande, J. Genoe, J. Poortmans, and P. Heremans, Org. Elec., 9, 740 (2008)   DOI   ScienceOn
40 J. H. Park, O. O. Park, J. Kim, J. W. Yu, J. K. Kim, and Y. C. Kim, Curr. Appl. Phys., 4, 659 (2004)   DOI   ScienceOn
41 J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, Chem. Phys., 245, 417 (1999)   DOI   ScienceOn
42 J. Do, R. P. Bontchev, and A. J. Jacobson, Inorg. Chem., 39, 3230 (2000)   DOI   ScienceOn
43 D. Pentlehner, I. Grau, and H. Yersin, Chem. Phys. Lett., 455, 72 (2008)   DOI   ScienceOn
44 G. Weiser, J. Appl. Phys., 43, 5028 (1972)   DOI   ScienceOn
45 H. J. Zhai, J. Dobler, J. Sauer, and L. S. Wang, J. Am. Chem. Soc., 129, 13270 (2007)   DOI   ScienceOn
46 R. S. Mane, J. Chang, D. Hama, B. N. Pawar, T. Ganesh, B. W. Cho, J. K. Lee, and S. H. Han, Curr. Appl. Phys., 9, 87 (2009)   DOI   ScienceOn