Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.4.607

Environment Dependent Coherence of a Short DNA Charge Transfer System  

Kim, Hee-Young (Department of Chemistry, Yonsei University)
Lee, Myeong-Won (Department of Chemistry, Yonsei University)
Sim, Eun-Ji (Department of Chemistry, Yonsei University)
Publication Information
Abstract
Relationship between charge transfer mechanism and quantum coherence has been investigated using a realtime quantum dynamics approach. In the on-the-fly filtered propagator functional path integral simulation, by separating paths that belong to different mechanisms and by integrating contributions of correspondingly sorted paths, it was possible to accurately obtain quantitative contribution of different transport mechanisms. For a 5'-GAGGG-3' DNA sequence, we analyze charge transfer processes quantitatively such that the governing mechanism alters from coherent to incoherent charge transfer with respect to the friction strength arising from dissipative environments. Although the short DNA sequence requires substantially strong dissipation for completely incoherent hopping transfer mechanism, even a weak system-environment interaction markedly destroys the coherence within the quantum mechanical system and the charge transfer dynamics becomes incoherent to some degree. Based on the forward-backward path deviation analysis, the coherence variation depending on the environment is investigated numerically.
Keywords
Coherence; Charge transfer; DNA; Path integral; Reorganization energy;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Conwell, E. M.; Rakhmanova, S. V. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4556   DOI   ScienceOn
2 Henderson, P. T.; Jones, D.; Hampikian, G.; Kan, Y.; Schuster, G. B. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353   DOI   ScienceOn
3 Zhang, H.; Li, X.-Q.; Hang, P.; Yu, X. Y.; Yan, Y. J. Chem. Phys. 2002, 117, 4578
4 Kim, H.; Sim, E. J. Phys. Chem. B 2006, 110, 631   DOI   ScienceOn
5 Dandliker, P. J.; Holmlin, R. E.; Barton, J. K. Science 1997, 275, 1465   DOI   ScienceOn
6 Kelley, S. O.; Barton, J. K. Science 1999, 283, 375   DOI   ScienceOn
7 Bixon, M.; Giese, B.; Wessely, R.; Langenbacher, T.; Michel- Beyerle, M. E.; Jortner, J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11713   DOI   ScienceOn
8 Renger, T.; Marcus, R. A. J. Phys. Chem. A 2003, 107, 8404   DOI   ScienceOn
9 Wan, C.; Fiebig, T.; Kelley, S. O.; Treadway, C. R.; Barton, J. K.; Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6014   DOI   ScienceOn
10 Troisi, A.; Orlandi, G. Chem. Phys. Lett. 2001, 344, 509   DOI   ScienceOn
11 Bixon, M.; Jortner, J. Chem. Phys. 2002, 281, 393   DOI   ScienceOn
12 Sim, E.; Kim, H. J. Phys. Chem. B 2006, 110, 13642   DOI   ScienceOn
13 Sim, E. J. Chem. Phys. 2001, 115, 4450   DOI   ScienceOn
14 Voityuk, A.; Jortner, J.; Bixon, M.; Rösch, N. Chem. Phys. Lett. 2000, 324, 430   DOI   ScienceOn
15 Voityuk, A. A.; Rösch, N.; Bixon, M.; Jortner, J. J. Phys. Chem. B 2000, 104, 9740   DOI   ScienceOn
16 Sartor, V.; Boone, E.; Schuster, G. B. J. Phys. Chem. B 2001, 105, 11057   DOI   ScienceOn
17 Berlin, Y. A.; Burin, A. L.; Ratner, M. A. Chem. Phys. 2002, 275, 61   DOI   ScienceOn
18 Brozema, F. C.; Berlin, Y. A.; Siebbeles, L. D. J. Am. Chem. Soc. 2000, 122, 10903   DOI   ScienceOn
19 Porath, D.; Bezryadin, A.; De Vries, S.; Dekker, C. Nature 2000, 403, 635   DOI   ScienceOn
20 Cai, L.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2000, 77, 3105   DOI   ScienceOn
21 Boon, E. M.; Ceres, D. M.; Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol. 2000, 18, 1096   DOI   ScienceOn