• 제목/요약/키워드: Chaotic Response

검색결과 51건 처리시간 0.031초

Chua 회로를 이용한 카오스 동기화 (Chaos Synchronization Using Chua's Circuit)

  • 배영철;고재호;이광원;서삼문;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1086-1088
    • /
    • 1996
  • A number of recent paper have investigated the feasibility of synchronizing chaotic system. In this paper we proposed the chaotic synchronization of the canonical. Chua's circuit with RLCG transmission line by drive-response system. We expect that proposed method is available to secure communication with RLCG transmission line.

  • PDF

Synchronization of Non-integer Chaotic Systems with Uncertainties, Disturbances and Input Non-linearities

  • Khan, Ayub;Nasreen, Nasreen
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.353-369
    • /
    • 2021
  • In this paper, we examine and analyze the concept of different non-integer chaotic systems with external disturbances, uncertainties, and input non-linearities. We consider both drive and response systems with external bounded disturbances and uncertainties. We also consider non-linear control inputs. For synchronization, we introduce the adaptive sliding mode technique, in which we establish the stability of the controlled system by a control which estimates uncertainties and disturbances, and then applies a suitable sliding surface to control them. We use computer simulations to established the efficacy and adeptness of the prospective scheme.

2차 비선형계의 파라메트릭 가진에 의한 진동 특성 (Parametrically Excited Vibrations of Second-Order Nonlinear Systems)

  • 박한일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.67-76
    • /
    • 1992
  • This paper describes the vibration characteristic of second-order nonlinear systems subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu equation in the first instability region are obtained by using a perturbation technique and are compared with those by a numerical integration method. It is shown that the response amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic nonlinear damping force. The largest reponse amplitude of parametric vibration occurs in the first instability region of Mathieu stability chart. The parametric excitation induces the response of a dynamic system to be subharmonic, superharmonic or chaotic according to their dynamic conditions.

  • PDF

다주파수 입력을 갖는 비선형 시스템의 안정성 및 Chaos 해석 (Chaotic Response and Stability Analysis for Multi-input Nonlinear Systems)

  • 김영배
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.123-131
    • /
    • 1995
  • 다주파수 입력을 갖는 강한 비선형 시스템의 유사주기 (quasi-periodic) 해를 해석하기 위하여 개선된 고정 점법(FPA:Fixed Point Alogrithm)을 개발하였다. 안정성 및 천이 특성을 판별하기 위하여 사용되어지는 Floquest 지수인 해석적 자코비언을 구하기 위하여 Poincare 맵상에서 이산 적분법을 새로이 고안, 사용하였다. 본 방법의 우수성을 입증하기 위하여 2개의 주파수 입력을 갖는 선형 시스템과 비선형 시스템을 예로 사용하였다. 본 방법을 이용하여 비선형 시스템에서 발생한 복잡한 chaos 현상을 체계적으로 해석하였다.

  • PDF

차단판에 의해 운동이 제한된 외팔보의 혼돈 진동 (Chaotic Vibrations of a Cantilevered Beam with Stops to Limit Motions)

  • 최봉문;류봉조;김영식;구경완
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1852-1865
    • /
    • 2017
  • The vibration of the structures with restrained motion has long been observed in various engineering fields. When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with stops, including some experimental works. Specially, the study on the nonlinear phenomena due to the impact between the structure and the stops have been mainly performed theoretically. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics of the nonlinear motion and the dynamic response of a cantilevered beam which has restrained motion at the free end by the stops. Results are presented for various magnetic forces and gaps between the beam and stops. The conclusions are as follows : Firstly, Numerical simulation results have a good agreement with experimental ones. Secondly, the effect of higher modes of beams are increased with increasing magnitude of exciting force, and displacement and velocity curves become more complicated shapes. Thirdly, nonlinear characteristics tend to appear greatly with increasing magnitude of exciting force, and fractal dimension is increased.

Chaotic Behavior on Rocking Vibration of Rigid Body Block Structure under Two-dimensional Sinusoidal Excitation (In the Case of No Sliding)

  • Jeong, Man-Yong;Lee, Hyun-;Kim, Ji-Hoon;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1249-1260
    • /
    • 2003
  • This present work focuses on the influence of nonlinearities associated with impact on the rocking behavior of a rigid body block subjected to a two-dimensional excitation in the horizontal and vertical directions. The nonlinearities in rocking system are found to be strongly dependent on the impact between the block and the base that abruptly reduces the kinetic energy. In this study, the rocking systems of the two types are considered : The first is an undamped rocking system model that disregards the energy dissipation during the impact and the second is a damped rocking system, which incorporates energy dissipation during the impact. The response analysis is carried out by a numerical method using a non-dimensional rocking equation in which the variations in the excitation levels are considered. Chaos responses are observed over a wide range of parameter values, and particularly in the case of large vertical displacements, the chaotic characteristics are observed in the time histories, Poincare sections, the power spectral density and the largest Lyapunov exponents of the rocking responses. Complex behavior characteristics of rocking responses are illustrated by the Poincare sections.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

주기적 물림강성 변화와 백래쉬에 의한 기어구동계의 비선형 동특성 (Nonlinear Dynamic Characteristics of Gear Driving Systems with Periodic Meshing Stiffness Variation and Backlash)

  • 조윤수;최연선
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.921-928
    • /
    • 2002
  • Main sources of the nitration of a gear-pair system are backlash and transmission error, the difference between required and actual rotation during gear meshing. This paper presents the nonlinear dynamic characteristics of gear motions due to the existence of backlash and periodic variation of meshing stiffness, which is assumed as a one-term harmonic component. Gear motions are classified as three types with the consideration of backlash. Each response is calculated using the harmonic balance method and confirmed by numerical integration. The responses with the increase of the rotating speed show abrupt changes in its magnitude for the variation of the preload, exciting force, and damping coefficient. The result also shows that there is a chaotic motion with some specific design parameters and operating conditions In gear diving system. Consequently the design of gear driving system with low nitration and noise requires the study on the effects of nonlinear dynamic characteristics due to stiffness variation and backlash.

혼돈이론을 응용한 예망어구에 대한 어류반응 행동모델의 수중현상 시각화 (Underwater Visualization for Fish Behaviour Model in the Towed Fisheries using Chaos Theory)

  • 박명철;김용해;하석운
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.645-653
    • /
    • 2004
  • 수중 어류의 행동이나 현상을 예측하여 시각화하기 위해서는 어류의 탐지와 어류반응행동의 파악이 우선 이루어져야 한다. 수중이라는 다변적인 환경요인이 현장 계측을 매우 어렵게 하거나 어류의 행동이 비선형적으로 복잡하고 혼돈스러우므로 기존의 단순한 그래픽처리는 실제 수중현상간의 차이를 극복하지 못해왔던 실정이다. 이에 본 논문에서는 매우 복잡 다양한 어류행동반응의 패턴에 대하여 기존의 연구에서 제안된 혼돈이론을 응용한 어류반응행동 모델을 이용하여 시각화 도구를 제안함으로써 수중의 어류이동현상을 예측하거나 평가, 또는 보다 더 정확히 분석하는 자료를 얻을 수 있게 구현하였다. 아울러, 어탐 디스플레이를 동시에 적용하여 사용자에게 반응에 따르는 어류의 탐지상황도 제공하였다. 제안된 시각화 도구를 평가하기 위하여 현장 계측된 어류의 이동 정보와 비교한 결과, 제안된 시각화 도구는 사실성 높은 어류 행동과 시각적인 이해도를 높일 수 있음을 확인 할 수 있었다.

PT철공진의 원인분석 및 현상모의 (Analysis and simulation of PT ferroresonance)

  • 강용철;이병은;정태영;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.42_43
    • /
    • 2009
  • Ferroresonance is a resonance condition between a nonlinear iron core of a potential transformer (PT) and a capacitance. It can lead to PT voltages several times the normal equipment ratings, and cause the isolation broken and damage to equipments near the PT. This paper proposes a analysis method of PT ferroresonance in the time domain. Based on the simplified equivalent circuit, a differential equation was found and the flux was calculated when ferroresonance generates. The forced response and natural response were also analyzed. The performance of proposed analysis method was verified with the EMTP-RV generated data. The method can help analysis chaotic ferroresonance and periodic ferroresonance.

  • PDF