• Title/Summary/Keyword: Chaos Signal

Search Result 111, Processing Time 0.025 seconds

Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis (진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어)

  • Kang, Dong-Hunn;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

Chaotic Phenomena in MEMS with Duffing Equation (Duffing 방정식을 가진 MEMS에서의 카오스 현상)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.709-716
    • /
    • 2011
  • Recently, there are many difficult for maintenance in the power in established sensor networks. In order to solve this problems, the power development has been interested using vibration in MEMS that insert the MEMS oscillator. In this paper, we propose the MEMS system with Duffing equation to generate vibration signal that can be use power signal in MEMS and confirm and verify the chaotic behaviors in vibration signal of MEMS by computer simulation. As a verification methods, we confirm the existence of period motion and chaotic motion by parameter variation through the time series, phase portrait, power spectrum and poincare map.

Evaluation of Chaotic evaluation of degradation signals of AISI 304 steel using the Attractor Analysis (어트랙터 해석을 이용한 AISI 304강 열화 신호의 카오스의 평가)

  • 오상균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • This study proposes that analysis and evaluation method of time series ultrasonic signal using the chaotic feature extrac-tion for degradation extent. Features extracted from time series data using the chaotic time series signal analyze quantitatively material degradation extent. For this purpose analysis objective in this study if fractal dimension lyapunov exponent and strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical syste, In experiment fractal(correlation) dimensions and lyapunov experiments showed values of mean 3.837-4.211 and 0.054-0.078 in case of degradation material The proposed chaotic feature extraction in this study can enhances ultrasonic pattern recognition results from degrada-tion signals.

  • PDF

Chaotic evaluation of material degradation time series signals of SA 508 Steel considering the hyperspace (초공간을 고려한 SA 508강의 재질열화 시계열 신호의 카오스성 평가)

  • 고준빈;윤인식;오상균;이영호
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.86-96
    • /
    • 1998
  • This study proposes the analysis method of time series ultrasonic signal using the chaotic feature extraction for degradation extent evaluation. Features extracted from time series data using the chaotic time series signal analyze quantitatively degradation extent. For this purpose, analysis objective in this study is fractal dimension, lyapunov exponent, strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal correlation) dimensions, lyapunov exponents, energy variation showed values of 2.217∼2.411, 0.097∼ 0.146, 1.601∼1.476 voltage according to degardation extent. The proposed chaotic feature extraction in this study can enhances precision ate of degradation extent evaluation from degradation extent results of the degraded materials (SA508 CL.3)

  • PDF

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Photo Sensitive Chaotic Signal Generator with Light Controllability (광감지 제어성을 갖는 카오스 신호 생성회로)

  • Oh, Se-Jin;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • A chaotic oscillator with light controllability was designed. The proposed chaotic oscillator consists of a photo sensor, two phase clock driven MOS switches, nonlinear function blocks for chaotic signal generation. SPICE circuit analysis using a 0.35 um CMOS process parameters was performed for its chaotic dynamics. And we confirmed that chaotic behaviors of the circuit can be controlled according to light intensity. By SPICE simulation, chaotic dynamics by time waveforms, frequency analysis was analyzed. SPICE results showed that proposed circuit can make various light-controlled chaotic signals.

A Study on Complexity Measure Algorithm of Time Series Data (시계열 데이타의 흔돈도 분석 알고리즘에 관한 연구)

  • Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.281-284
    • /
    • 1995
  • This paper describes a complexity measure algorithm based on nonlinear dynamics(chaos theory). In order to quantify complexity or regularity of biomedical signal, this paper proposed fractal dimension-1 and fractal dimension-2 algorithm with digital filter. Approximate entropy algorithm which measure a system regularity are also compared. In this paper investigate what we quantify of biomedical signal. These quantified complexity measure may be a useful information about human physiology.

  • PDF

A Nonlinear Analysis of The Partial Discharge Signal (부분방전 신호의 비 선형적 해석)

  • 김성홍;임윤석;장진강;이영상;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.165-168
    • /
    • 1999
  • The chaotic characteristics of partial discharge(PD), may seems to be stochastic and merely random, were investigated using the method to discern between chaos and random signal, e.g. correlation integral, Lyapunov characteristic exponents and etc. For the purpose of obtaining experimental data, computer aided partial discharge detecting system was used. While this method is very different from typical statistical analysis from the point of view of a nonlinear analysis, it can provide better interpretable criterion according to the time evolution with a degradation process in the same type insulating system.

  • PDF

Large-Signal Modulation Characteristics of a Diode Laser (다이오드 레이저의 대신호 변조특성)

  • Lee, Chang-Hee;Yoon, Tae-Hoon;Shin, Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 1986
  • The nonlinear rate equations are solved analytically by using the singular perturbation method to study effects of the spontaneous emission factor and the photon lifetime on the primary resonance and the first subharmonic generation(i.e., the onset of the periocd-doubling route to chaos). By large signal modulation of Hitachi CSP laser HLP 1400, the resonance frequency shift than 100 ps with 1 GHz repetition rate are generated. The experimental observations are in reasonable agreement with the theoretical results obtained using measured parameters of the rate equations.

  • PDF