• 제목/요약/키워드: Channel strategy

검색결과 552건 처리시간 0.033초

모바일 무선 센서 네트워크를 위한 Cross-Layer 협력도움 라우팅 구조 (A Cross-Layer Cooperative Routing Architecture for Mobile Wireless Sensor Networks)

  • 이주상;안병구
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.141-150
    • /
    • 2011
  • 본 논문에서는 모바일 무선 센서네트워크에서 전송효율을 효과적으로 지원하기 위한 Cross-Layer 협력도움 라우팅 구조를 제안한다. 제안된 구조 및 방법의 주요한 특징 및 기여도는 다음과 같다. 첫째, 모바일 노드들의 위치정보를 이용한 클러스터링을 하부구조로 사용한다. 둘째, 전송효율 및 채널효율을 효과적으로 지원하기 위해서 네트워크계층, MAC 계층, 물리계층을 이용한 Cross-Layer 협력도움 라우팅 및 전송전략이 사용된다. 셋째, 기존의 센서네트워크는 주로 고정된 센서 노드들로 구성된 환경에서 많은 연구가 되어 왔지만, 본 연구에서는 노드들의 이동성을 고려한 모바일 무선 센서네트워크에서 연구가 이루어진다. 제안된 방법의 성능평가는 OPNET(Optimized Network Engineering Tool)을 사용한 시뮬레이션과 이론적 분석을 통하여 이루어진다. 성능평가를 통하여 제안된 Cross-Layer 협력도움 라우팅 구조는 전송효율을 효과적으로 증가 시킬 수 있음을 알 수 있다.

Astrogliosis Is a Possible Player in Preventing Delayed Neuronal Death

  • Jeong, Hey-Kyeong;Ji, Kyung-Min;Min, Kyoung-Jin;Choi, Insup;Choi, Dong-Joo;Jou, Ilo;Joe, Eun-Hye
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.345-355
    • /
    • 2014
  • Mitigating secondary delayed neuronal injury has been a therapeutic strategy for minimizing neurological symptoms after several types of brain injury. Interestingly, secondary neuronal loss appeared to be closely related to functional loss and/or death of astrocytes. In the brain damage induced by agonists of two glutamate receptors, N-ethyl-D-aspartic acid (NMDA) and kainic acid (KA), NMDA induced neuronal death within 3 h, but did not increase further thereafter. However, in the KA-injected brain, neuronal death was not obviously detectable even at injection sites at 3 h, but extensively increased to encompass the entire hemisphere at 7 days. Brain inflammation, a possible cause of secondary neuronal damage, showed little differences between the two models. Importantly, however, astrocyte behavior was completely different. In the NMDA-injected cortex, the loss of glial fibrillary acidic protein-expressing ($GFAP^+$) astrocytes was confined to the injection site until 7 days after the injection, and astrocytes around the damage sites showed extensive gliosis and appeared to isolate the damage sites. In contrast, in the KA-injected brain, $GFAP^+$ astrocytes, like neurons, slowly, but progressively, disappeared across the entire hemisphere. Other markers of astrocytes, including $S100{\beta}$, glutamate transporter EAAT2, the potassium channel Kir4.1 and glutamine synthase, showed patterns similar to that of GFAP in both NMDA- and KA-injected cortexes. More importantly, astrocyte disappearance and/or functional loss preceded neuronal death in the KA-injected brain. Taken together, these results suggest that loss of astrocyte support to neurons may be a critical cause of delayed neuronal death in the injured brain.

Growth Responses of the Filter-Feeding Clam Gafrarium tumidum to Water Flow: A Field Manipulation Experiment

  • Cheung, S.G.;Shin, Paul K.S.
    • Journal of Ecology and Environment
    • /
    • 제30권2호
    • /
    • pp.109-119
    • /
    • 2007
  • The effect of water flow on the growth of Gafrarium tumidum was studied in the field using open cages constructed with stainless steel net and perspex in which holes were drilled. Cages with different flows (25, 50 and 75% of the control) were made by varying the area of perspex being drilled. Reduction in flow rate was directly proportional to the undrilled area, and the mean flow rate of the different treatment groups varied from 3.12 cm/s for the 25% exposure to 12.48 cm/s for the control cages. At the end of the 3-month experiment, no significant differences in sediment characteristics were found among the treatments. Growth in shell length, shell weight and tissue dry weight was, however, positively correlated with flow rate. Percentage increases ranged from $3.0{\sim}8.3%$ for shell length, $9.9{\sim}23.1%$ for shell weight and $17.2{\sim}53.3%$ for tissue dry weight. Condition index of the clam was not significantly different among the treatments. Seston depletion effect could reduce growth in G. tumidum only when water flow was reduced to 25% of the control. G. tumidum also exhibited different responses in shell and tissue growth at low flow rates, in which shell growth continued to decrease as flow rate decreased whereas tissue growth was relatively independent of low flows at 25 and 50% of the control. It was suggested that when seston flux was reduced at slow flows, it would be a better strategy for G. tumidum to channel energy for gonad development instead of shell growth during the reproductive stage.

FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법 (Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment)

  • 배원건;김정곤
    • 한국통신학회논문지
    • /
    • 제37권7B호
    • /
    • pp.505-516
    • /
    • 2012
  • 4G 이동통신 핵심 기술 중 펨토셀 시스템 실제 구현 시에 매크로셀과 펨토셀이 동일 주파수를 사용하면 동일채널 간섭이발생되기 때문에 이를 해결하기 위해 주파수 자원을 서로 다르게 할당하는 간섭 회피 기술이 필요하다. 본 논문에서는 매크로셀과 펨토셀 간의 기존 자원 할당 방식을 분석하여, 문제점을 도출하고 이를 기반으로, 본 논문에서는 FFR (Fractional Frequency Reuse) 기반의 펨토셀이 분포된 환경에서 셀 용량을 증가시키고 주파수 효율을 최대화하기 위한 적응 주파수 자원 할당 방식에 대해 제안하였다. 모의 실험 수행 결과, 기존 방식과 비교하여 SINR (Signal to Interference Noise Ratio) 분포에서는 근소한 개선 효과를 보였고, 전체 셀 용량에서는 큰 개선 효과를 보여주었다. 본 논문의 현실적인 구현을 위해 펨토 및매크로 유저 분포의 검출 방안 등에 대한 연구 및 전력 제어나 다중 신호 간섭 검출을 통해 간섭을 완화하는 방안 과의 결합방식 들에 대한 연구가 향후 추가 적으로 더 진행 되어야 할 것으로 생각 된다.

Charisma: Trimble's Modernized Differential GPS Reference Station and Integrity Monitor Software

  • Remondi, Benjamin W.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.221-226
    • /
    • 2006
  • Around 2002, the United States Coast Guard (USCG) identified a need to re-capitalize their Reference Station (RS) and Integrity Monitor (IM) equipment used in the Nationwide Differential Global Position System (NDGPS). Commercially available off-the-shelf differential RS and IM equipment lacked the open architecture required to support long-term goals that include future system improvements such as use of new civil frequencies on L2 and L5 and realization of a higher rate NDGPS beacon data channel intended to support RTK. The first step in preparing for this future NDGPS was to port current RTCM SC-104 compatible RS and IM functionality onto an open architecture PC-based platform. Trimble's product Charisma is a PC-based RS and IM software designed to meet these USCG goals. In fact USCG engineers provided key designs and design insights throughout the development. We cannot overstate the contribution of the USCG engineers. Fundamental requirements for this effort were that it be sufficiently flexible in hardware and software design to support fluid growth and exploitation of new signals and technologies as they become available, yet remain backward compatible with legacy user receivers and existing site hardware and system architecture. These fundamental goals placed an implicit adaptability requirement on the design of the replacement RS and IM. Additionally, project engineers were to remain focused on sustaining the high level of differential GPS service that 1.5 million legacy users have come to depend on. This paper will present new hardware and software (i.e., Trimble's Charisma software) architecture for the next generation NDGPS RS and IM. This innovative approach to engineering on an open architecture PC-based platform allows the system to continue to fulfill legacy NDGPS system requirements and allows the USCG and others to pursue a scalable hardware re-capitalization strategy. We will use the USCG's recapitalization project to explain the essential role of the Charisma software.

  • PDF

DCS mesh 네트워크에서 다중 선로 장애와 노드 장애를 복구하기 위한 다중 계층 복구 전략 (Multi-layer restoration strategy to restore the multi-link and node failures in DCS mesh networks)

  • 김호진;조규섭;이원문
    • 한국통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.2744-2754
    • /
    • 1997
  • 회선분배시스템(DCS: Digital Cross-connet System)을 이용한 mesh 구조의 동기식 전송망에서 망의 장애를 효과적으로 복구하기 위한 망 복구 방식 중 최근에 제안된 다중 계층 복구(MLR: Multi-Layer Restoration) 방식은 선계획(Pre-planned) 복구 방식과 다이나믹(Dynamic) 복구 방식을 단계별로 구성하여 보다 효율적인 망복구를 수행하기 위한 망 복구 전략으로 B.T(British Telecom)에서 제안되었다[1,2]. 이 망 복구 전략은 단일 선로 장애에 대해 효율적인 성능을 발휘할 수 있으나, 다중 선로 장애와 노드 장애의 경우 선계획 복구 단계에서 복구되지 못하고 다이나믹 복구 단계에서 복구됨으로 인해서 선계획 복구의 장점을 최대한 활용하지 못하여 복구 성능 감쇠를 초래한다. 본 논문에서는 기존의 다중 계층 복구 방식에서 사용되는 선계획 복구 단계에 선계획 Multi-chooser 복구 단계를 추가한 새로운 다중 계충 복구 방식을 제안하였으며, 이 방식은 다중 선로와 노드 장애에 대하여 빠른 복구 시간과 높은 복구율을 갖고 있다. 또한, 제안한 복구 알고리즘을 모델링하여 OPNET(OPtimized Network Enginnering Tool)을 이용한 시뮬레이션을 통해 이의 성능을 분석, 검증하였다.

  • PDF

Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats

  • Yoon, Jeong-Ho;Son, Jo-Young;Kim, Min-Ji;Kang, Song-Hee;Ju, Jin-Sook;Bae, Yong-Chul;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.331-341
    • /
    • 2018
  • The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • 정현담
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.