Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.5.567

A review on deep learning-based structural health monitoring of civil infrastructures  

Ye, X.W. (Department of Civil Engineering, Zhejiang University)
Jin, T. (Department of Civil Engineering, Zhejiang University)
Yun, C.B. (Department of Civil Engineering, Zhejiang University)
Publication Information
Smart Structures and Systems / v.24, no.5, 2019 , pp. 567-585 More about this Journal
Abstract
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
Keywords
structural health monitoring; deep learning; convolutional neural network; structural damage detection; structural condition assessment; artificial intelligence; machine learning; computer vision;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput.-Aided Civil Infrastruct. Eng., 34(5), 415-430. DOI: 10.1111/mice.12425.   DOI
2 Liang, Y., Wu, D.L., Liu, G.R., Li, Y.H., Gao, C.L., Ma, Z.G.J. and Wu, W.D. (2016), "Big data-enabled multiscale serviceability analysis for aging bridges", Digit. Commun. Netw., 2(3), 97-107. DOI: 10.1016/j.dcan.2016.05.002.   DOI
3 Lin, G.S., Milan, A., Shen, C.H. and Reid, I. (2017), "RefineNet: multi-path refinement networks for high-resolution semantic segmentation", Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA, (CD-ROM).
4 Lin, Y.Z., Nie, Z.H. and Ma, H.W. (2017), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civil Infrastruct. Eng., 32(12), 1025-1046. DOI: 10.1111/mice.12313.   DOI
5 Liu, H. and Zhang, Y.F. (2019), "Image-driven structural steel damage condition assessment method using deep learning algorithm", Measurement, 133, 168-181. DOI: 10.1016/j.measurement.2018.09.081.   DOI
6 Liu, J.B., Huang, Y.P., Zou, Q., Tian, M., Wang, S.C., Zhao, X.X., Dai, P. and Ren, S.W. (2019), "Learning visual similarity for inspecting defective railway fasteners", IEEE Sens. J., 19(16), 6844-6857. DOI: 10.1109/Jsen.2019.2911015.   DOI
7 Song, Q., Wu, Y.Q., Xin, X.S., Yang, L., Yang, M., Chen, H.M., Liu, C., Hu, M.J., Chai, X.S. and Li, J.C. (2019), "Real-time tunnel crack analysis system via deep learning", IEEE Access, 7, 64186-64197. DOI: 10.1109/Access.2019.2916330.   DOI
8 Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Boston, MA, USA.
9 Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Columbus, USA (CD-ROM).
10 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial nets", Proceedings of the International Conference on Neural Information Processing Systems, Montreal, Canada (CD-ROM).
11 Gopalakrishnan, K., Khaitan, S.K., Choudhary, A. and Agrawal, A. (2017), "Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection", Constr. Build. Mater., 157, 322-330. DOI: 10.1016/j.conbuildmat2017.09.110.   DOI
12 Gulgec, N.S., Takac, M. and Pakzad, S.N. (2019), "Convolutional neural network approach for robust structural damage detection and localization", J. Comput. Civil. Eng., 33(3), 04019005. DOI: 10.1061/(Asce)Cp.1943-5487.0000820.   DOI
13 Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks - a review", Smart. Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159.   DOI
14 He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA (C-ROM).
15 Hinton, G.E., Krizhevsky, A. and Wang, S.D. (2011), "Transforming auto-encoders", Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Finland (CD-ROM).
16 Hinton, G.E., Osindero, S. and Teh, Y.W. (2006), "A fast learning algorithm for deep belief nets", Neural Comput., 18(7), 1527-1554. DOI: 10.1162/neco.2006.18.7.1527.   DOI
17 Szewczyk, Z.P. and Hajela, P. (1994), "Damage detection in structures based on feature-sensitive neural networks", J. Comput. Civil. Eng., 8(2), 163-178. DOI: 10.1061/(Asce)0887-3801(1994)8:2(163).   DOI
18 Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control. Health Monit., 26(3), e2321. DOI: 10.1002/Stc.2321.   DOI
19 Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. DOI: 10.1016/j.eng.2018.11.030.   DOI
20 Szegedy, C., Liu, W., Jia, Y.Q., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2014), "Going deeper with convolutions", arXiv preprint arXiv:1409.4842.
21 Tang, Z.Y., Chen, Z.C., Bao, Y.Q. and Li, H. (2019), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control. Health Monit., 26(1), e2296. DOI: 10.1002/Stc.2296.   DOI
22 Tong, Z., Gao, J. and Zhang, H.T. (2017), "Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks", Constr. Build. Mater., 146, 775-787. DOI: 10.1016/j.conbuildmat.2017.04.097.   DOI
23 Tong, Z., Gao, J., Han, Z.Q. and Wang, Z.J. (2018), "Recognition of asphalt pavement crack length using deep convolutional neural networks", Road Mater. Pavement Des., 19(6), 1334-1349. DOI: 10.1080/14680629.2017.1308265.   DOI
24 Yeum, C.M., Choi, J. and Dyke, S.J. (2019), "Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure", Struct. Health Monit., 18(3), 675-689. DOI: 10.1177/1475921718765419.   DOI
25 Ye, X.W., Dong, C.Z. and Liu, T. (2016c), "Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification", Smart. Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.   DOI
26 Ye, X.W., Jin, T. and Chen, P.Y. (2019). "Structural crack detection using deep learning-based fully convolutional networks", Adv. Struct. Eng., DOI: 10.1177/1369433219836292.
27 Yeum, C.M., Dyke, S.J. and Ramirez, J. (2018), "Visual data classification in post-event building reconnaissance", Eng. Struct., 155, 16-24. DOI: 10.1016/j.engstruct.2017.10.057.   DOI
28 Yu, Y., Wang, C.Y., Gu, X.Y. and Li, J.C. (2019), "A novel deep learning-based method for damage identification of smart building structures", Struct. Health Monit., 18(1), 143-163. DOI: 10.1177/1475921718804132.   DOI
29 Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. DOI: 10.1016/S0045-7949(99)00199-6.   DOI
30 Zeiler, M.D. and Fergus, R. (2014), "Visualizing and understanding convolutional networks", Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, (CD-ROM).
31 Matos, J.C.E., Garcia, O., Henriques, A.A., Casas, J.R. and Vehi, J. (2009), "Health monitoring system (HMS) for structural assessment", Smart. Struct. Syst., 5(3), 223-240. https://doi.org/10.12989/sss.2009.5.3.223.   DOI
32 Liu, J.T., Yang, X.X. and Li, L. (2019), "VibroNet: recurrent neural networks with multi-target learning for image-based vibration frequency measurement", J. Sound Vib., 457, 51-66. DOI: 10.1016/j.jsv.2019.05.027.   DOI
33 Tong, Z., Gao, J., Sha, A.M., Hu, L.Q. and Li, S. (2018), "Convolutional neural network for asphalt pavement surface texture analysis", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1056-1072. DOI: 10.1111/mice.12406.   DOI
34 Vodrahalli, K. and Bhowmik, A.K. (2017), "3D computer vision based on machine learning with deep neural networks: a review", J. Soc. Inf. Disp., 25(11), 676-694. DOI: 10.1002/jsid.617.   DOI
35 Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. DOI: 10.12989/sss.2016.17.6.935.   DOI
36 Zhang, A., Wang, K.C.P., Li, B.X., Yang, E.H., Dai, X.X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civil Infrastruct. Eng., 32(10), 805-819. DOI: 10.1111/mice.12297.   DOI
37 Hoang, N.D., Nguyen, Q.L. and Tran, V.D. (2018), "Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network", Automat. Constr., 94, 203-213. DOI: 10.1016/j.autcon.2018.07.008.   DOI
38 Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput, 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.   DOI
39 Lyu, T., Xu, C.H., Chen, G.M., Li, Q.Y., Zhao, T.T. and Zhao, Y.P. (2019), "Health state inversion of jack-up structure based on feature learning of damage information", Eng. Struct., 186, 131-145. DOI: 10.1016/j.engstruct.2019.02.004.   DOI
40 Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection and classification using deep neural networks with smartphone images", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1127-1141. DOI: 10.1111/mice.12387.   DOI
41 Mcculloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", B. Math. Biol., 5, 115-133. DOI: 10.1007/BF02478259.
42 Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011. DOI: 10.1088/0964-1726/19/12/125011.   DOI
43 Min, J., Yi, J.H. and Yun, C.B. (2015), "Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure", Smart. Struct. Syst., 15(2), 283-297. https://doi.org/10.12989/sss.2015.15.2.283.   DOI
44 Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control. Health Monit., 26(1), e2286. DOI: 10.1002/Stc.2286.   DOI
45 Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Comput.-Aided Civil Infrastruct. Eng., 34(5), 367-384. DOI: 10.1111/mice.12421.   DOI
46 Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aided Civil Infrastruct. Eng., 34(8), 713-727. DOI: 10.1111/mice.12440.   DOI
47 Alipour, M., Harris, D.K. and Miller, G.R. (2019), "Robust pixel-level crack detection using deep fully convolutional neural networks", J. Comput. Civil. Eng., 33(6), 04019040. DOI: 10.1061/(Asce)Cp.1943-5487.0000854.   DOI
48 Atha, D.J. and Jahanshahi, M.R. (2018), "Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection", Struct. Health. Monit., 17(5), 1110-1128. DOI: 10.1177/1475921717737051.   DOI
49 Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "SegNet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(12), 2481-2495. DOI: 10.1109/Tpami.2016.2644615.   DOI
50 Bao, Y.Q., Tang, Z.Y., Li, H. and Zhang, Y.F. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monit., 18(2), 401-421. DOI: 10.1177/1475921718757405.   DOI
51 Huang, H.W., Li, Q.T. and Zhang, D.M. (2018), "Deep learning based image recognition for crack and leakage defects of metro shield tunnel", Tunn. Undergr. Sp. Tech., 77, 166-176. DOI: 10.1016/j.tust.2018.04.002.   DOI
52 Hopfield, J.J. (1982), "Neural networks and physical systems with emergent collective computational abilities", Proc. Natl. Acad. Sci. USA., 79(8), 2554-2558. DOI: 10.1073/pnas.79.8.2554.   DOI
53 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017), "Mobilenets: efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861.
54 Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017), "Densely connected convolutional networks", Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA (CD-ROM).
55 Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105, UNSP 102844. DOI: 10.1016/J.Autcon.2019.102844.
56 Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart. Struct. Syst., 6(5-6), 439-459. https://doi.org/ 10.12989/sss.2010.6.5_6.439.   DOI
57 Hinton, G.E. and Salakhutdinov, R.R. (2006), "Reducing the dimensionality of data with neural networks", Science, 313(5786), 504-507. DOI: 10.1126/science.1127647.   DOI
58 Wang, Z.Y., Zheng, H.R., Li, L.C., Liang, J.J., Wang, X., Lu, B., Ye, Q., Qu, R.H. and Cai, H.W. (2019), "Practical multi-class event classification approach for distributed vibration sensing using deep dual path network", Opt. Express, 27(17), 23682-23692. DOI: 10.1364/Oe.27.023682.   DOI
59 Wang, M.Z. and Cheng, J.C.P. (2019), "A unified convolutional neural network integrated with conditional random field for pipe defect segmentation", Comput.-Aided Civil Infrastruct. Eng., DOI: 10.1111/mice.12481.
60 Wang, N.N., Zhao, Q.G., Li, S.Y., Zhao, X.F. and Zhao, P. (2018), "Damage classification for masonry historic structures using convolutional neural networks based on still images", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1073-1089. DOI: 10.1111/mice.12411.   DOI
61 Wei, X.K., Yang, Z.M., Liu, Y.X., Wei, D.H., Jia, L.M. and Li, Y.J. (2019), "Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study", Eng. Appl. Artif. Intell., 80, 66-81. DOI: 10.1016/j.engappai.2019.01.008.   DOI
62 Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. DOI: 10.1111/mice.12263.   DOI
63 Beckman, G.H., Polyzois, D. and Cha, Y.J. (2019), "Deep learning-based automatic volumetric damage quantification using depth camera", Automat. Constr., 99, 114-124. DOI: 10.1016/j.autcon.2018.12.006.   DOI
64 Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer, New York, NY, USA.
65 Ceylan, H., Bayrak, M.B. and Gopalakrishnan, K. (2014), "Neural networks applications in pavement engineering: a recent survey", Intl. J. Pavement Res. Tech., 7(6), 434-444. DOI: 10.6135/ijprt.org.tw/2014.7(6).434.
66 Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Tao, S.Y., Chen, C., Li, J.Q. and Li, B.X. (2018), "Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet", J. Comput. Civil Eng., 32(5), 4018041. DOI: 10.1061/(Asce)Cp.1943-5487.0000775.   DOI
67 Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Chen, C., Yang, G.W., Li, J.Q., Yang, E.H. and Qiu, S. (2019), "Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network", Comput.-Aided Civil Infrastruct. Eng., 34(3), 213-229. DOI: 10.1111/mice.12409.   DOI
68 Zhang, B., Zhou, L.M. and Zhang, J. (2019), "A methodology for obtaining spatiotemporal information of the vehicles on bridges based on computer vision", Comput.-Aided Civil Infrastruct. Eng., 34(6), 471-487. DOI: 10.1111/mice.12434.   DOI
69 Zhang, J.M., Lu, C.Q., Wang, J., Wang, L. and Yue, X.G. (2019), "Concrete cracks detection based on FCN with dilated convolution", Appl. Sci.-Basel, 9(13), 2686. DOI: 10.3390/App9132686.   DOI
70 Weng, J.Y., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M. and Thelen, E. (2001), "Artificial intelligence - autonomous mental development by robots and animals", Science, 291(5504), 599-600. DOI: 10.1126/science.291.5504.599.   DOI
71 Wu, R.T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145(1), 04018125. DOI: 10.1061/(Asce)Em.1943-7889.0001556.   DOI
72 Wu, R.T., Singla, A., Jahanshahi, M.R., Bertino, E., Ko, B.J. and Verma, D. (2019), "Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures", Comput.-Aided Civil Infrastruct. Eng., 34(9), 774-789. DOI: 10.1111/mice.12449.   DOI
73 Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. DOI: 10.1016/0045-7949(92)90132-J.   DOI
74 Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G. and Jia, J.Y. (2017), "Pyramid scene parsing network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA (CD-ROM).
75 Zhang, K.G., Cheng, H.D. and Zhang, B.Y. (2018), "Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning", J. Comput. Civil. Eng., 32(2), 04018001. DOI: 10.1061/(Asce)Cp.1943-5487.0000736.   DOI
76 Zhang, X., Zhou, X.Y., Lin, M.X. and Sun, R. (2018), "ShuffleNet: an extremely efficient convolutional neural network for mobile devices", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Salt Lake City, USA (CD-ROM).
77 Zhang, Y.Q., Miyamori, Y., Mikami, S. and Saito, T. (2019), "Vibration-based structural state identification by a 1-dimensional convolutional neural network", Comput.-Aided Civil Infrastruct. Eng., 34(9), 822-839. DOI: 10.1111/mice.12447.   DOI
78 Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech., 138(2), 175-183. DOI: 10.1061/(Asce)Em.1943-7889.0000313.   DOI
79 Ni, Y.Q., Wang, B.S. and Ko, J.M. (2002), "Constructing input vectors to neural networks for structural damage identification", Smart Mater. Struct., 11(6), 825-833. DOI: 10.1088/0964-1726/11/6/301.   DOI
80 Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: Analytical model and application", J. Struct. Eng., 136(12), 1563-1573. DOI: 10.1061/(Asce)St.1943-541x.0000250.   DOI
81 Khodabandehlou, H., Pekcan, G. and Fadali, M.S. (2019), "Vibration-based structural condition assessment using convolution neural networks", Struct. Control. Health Monit., 26(2), e2308. DOI: 10.1002/Stc.2308.
82 Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastruct. Eng., 33, 731-747. DOI: 10.1111/mice.12334.   DOI
83 Chellapilla, K., Puri, S. and Simard, P. (2006), "High performance convolutional neural networks for document processing", Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition, La Baule, France (CD-ROM).
84 Chen, F.C. and Jahanshahi, M.R. (2018), "NB-CNN: deep learning-based crack detection using convolutional neural network and naive bayes data fusion", IEEE T.. Ind. Electron., 65(5), 4392-4400. DOI: 10.1109/Tie.2017.2764844.   DOI
85 Kang, G.Q., Gao, S.B., Yu, L. and Zhang, D.K. (2019), "Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning", IEEE T. Instrum. Meas., 68(8), 2679-2690. DOI: 10.1109/Tim.2018.2868490.   DOI
86 Kesavan, K., Ravisankar, K., Parivallal, S. and Sreeshylam, P. (2005), "Applications of fiber optic sensors for structural health monitoring", Smart. Struct. Syst., 1(4), 355-368. https://doi.org/10.12989/sss.2005.1.4.355.   DOI
87 Kim, B. and Cho, S. (2018), "Automated vision-based detection of cracks on concrete surfaces using a deep learning technique", Sensors, 18(10), 3452. DOI: 10.3390/S18103452.   DOI
88 Kim, B. and Cho, S. (2019), "Image-based concrete crack assessment using mask and region-based convolutional neural network", Struct. Control. Health Monit., 26(8), e2381. DOI: 10.1002/Stc.2381.   DOI
89 Kim, H. and Sim, S.H. (2019), "Automated peak picking using region-based convolutional neural network for operational modal analysis", Struct. Control. Health Monit., e2436. DOI: 10.1002/Stc.2436.
90 Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle", Sensors, 18(6), 1881. DOI: 10.3390/S18061881.   DOI
91 Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart. Struct. Syst., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521.   DOI
92 Noh, H., Hong, S. and Han, B. (2015), "Learning deconvolution network for semantic segmentation", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile (CD-ROM).
93 Nowozin, S., Cseke, B. and Tomioka, R. (2016), "f-GAN: training generative neural samplers using variational divergence minimization", Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain (CD-ROM).
94 Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastruct. Eng., 34(10), 843-858. DOI: 10.1111/mice.12476.   DOI
95 Park, S., Bang, S., Kim, H. and Kim, H. (2019), "Patch-based crack detection in black box images using convolutional neural networks", J. Comput. Civil. Eng., 33(3), 04019017. DOI: 10.1061/(Asce)Cp.1943-5487.0000831.   DOI
96 Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E. (2016). "Enet: a deep neural network architecture for real-time semantic segmentation", arXiv preprint arXiv:1606.02147.
97 Cho, S., Yun, C.B. and Sim, S.H. (2015), "Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model", Smart. Struct. Syst., 15(3), 645-663. https://doi.org/10.12989/sss.2015.15.3.645.   DOI
98 Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018), "DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs", IEEE T. Pattern Anal. Mach. Intell., 40(4), 834-848. DOI: 10.1109/Tpami.2017.2699184.   DOI
99 Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. and Abbeel, P. (2016), "InfoGAN: interpretable representation learning by information maximizing generative adversarial nets", Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain (CD-ROM).
100 Cheng, J.C.P. and Wang, M.Z. (2018), "Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques", Automat. Constr., 95, 155-171. DOI: 10.1016/j.autcon.2018.08.006.   DOI
101 Ciresan, D.C., Meier, U., Gambardella, L.M. and Schmidhuber, J. (2010), "Deep, big, simple neural nets for handwritten digit recognition", Neural Comput., 22(12), 3207-3220. DOI: 10.1162/Neco_a_00052.   DOI
102 Zhao, J., Mathieu, M. and LeCun, Y. (2016), "Energy-based generative adversarial network", arXiv preprint arXiv:1609.03126.
103 Zhao, X.F., Zhang, Y. and Wang, N.N. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control. Health Monit., 26(1), e2292. DOI: 10.1002/Stc.2292.   DOI
104 Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z.Z., Du, D.L., Huang, C. and Torr, P.H.S. (2015), "Conditional random fields as recurrent neural networks", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile (CD-ROM).
105 Xu, Y., Wei, S.Y., Bao, Y.Q. and Li, H. (2019), "Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network", Struct. Control. Health Monit., 26(3), e2313. DOI: 10.1002/Stc.2313.   DOI
106 Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA (CD-ROM).
107 Kang, D.H. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aided Civil Infrastruct. Eng., 33(10), 885-902. DOI: 10.1111/mice.12375.   DOI
108 Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound. Vib., 388, 154-170. DOI: 10.1016/j.jsv.2016.10.043.   DOI
109 Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aided Civil Infrastruct. Eng., 16(2), 126-142. DOI: 10.1111/0885-9507.00219.   DOI
110 Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput.-Aided Civil Infrastruct. Eng., 4(4), 247-256. DOI: 10.1111/j.1467-8667.1989.tb00026.x.   DOI
111 Xue, Y.D. and Li, Y.C. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Comput.-Aided Civil Infrastruct. Eng., 33(8), 638-654. DOI: 10.1111/mice.12367.   DOI
112 Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315.   DOI
113 Zhou, C., Chase, J.G. and Rodgers, G.W. (2019), "Degradation evaluation of lateral story stiffness using HLA-based deep learning networks", Adv. Eng. Inform., 39, 259-268. DOI: 10.1016/j.aei.2019.01.007.   DOI
114 Zhang, X.X., Rajan, D. and Story, B. (2019), "Concrete crack detection using context-aware deep semantic segmentation network", Comput.-Aided Civil Infrastruct. Eng., DOI: 10.1111/mice.12477.
115 Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W.Q. and Ni, P.H. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. DOI: 10.1016/j.engstruct.2018.05.109.   DOI
116 Yang, G.W., Li, Q.J., Zhan, Y., Fei, Y. and Zhang, A.N. (2018), "Convolutional neural network-based friction model using pavement texture data", J. Comput. Civil Eng., 32(6), 04018052. DOI: 10.1061/(Asce)Cp.1943-5487.0000797.   DOI
117 Yang, X.C., Li, H., Yu, Y.T., Luo, X.C., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1090-1109. DOI: 10.1111/mice.12412.   DOI
118 Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. DOI: 10.1016/j.engstruct.2012.06.016.   DOI
119 Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.   DOI
120 Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016a), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 88, 372-384. DOI: 10.1016/j.measurement.2016.01.024.   DOI
121 Rosenblatt, F. (1958), "The perceptron - a probabilistic model for information-storage and organization in the brain", Psychol. Rev., 65(6), 386-408. DOI: 10.1037/H0042519.   DOI
122 DeVries, P.M.R., Viegas, F., Wattenberg, M. and Meade, B.J. (2018), "Deep learning of aftershock patterns following large earthquakes", Nature, 560(7720), 632-634. DOI: 10.1038/s41586-018-0438-y.   DOI
123 Rafiei, M.H. and Adeli, H. (2018), "A novel unsupervised deep learning model for global and local health condition assessment of structures", Eng. Struct., 156, 598-607. DOI: 10.1016/j.engstruct.2017.10.070.   DOI
124 Raina, R., Madhavan, A. and Ng, A.Y. (2009), "Large-scale deep unsupervised learning using graphics processors", Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada (CD-ROM).
125 Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2015), "Faster R-CNN: towards real-time object detection with region proposal networks", Proceedings of the 29th Annual Conference on Neural Information Processing Systems, Montreal, Canada (CD-ROM).
126 Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-Net: convolutional networks for biomedical image segmentation", Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany (CD-ROM).
127 Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323(6088), 533-536. DOI: 10.1038/323533a0.   DOI
128 Russell, S.J. and Norvig, P. (2016), Artificial Intelligence: A Modern Approach, Pearson Education Limited, Harlow, England, UK.
129 Sabour, S., Frosst, N. and Hinton, G.E. (2017), "Dynamic routing between capsules", Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA (CD-ROM).
130 Dick, K., Russell, L., Dosso, Y.S., Kwamena, F. and Green, J.R. (2019), "Deep learning for critical infrastructure resilience", J. Infrastruct. Syst., 25(2), 05019003. DOI: 10.1061/(Asce)Is.1943-555x.0000477.   DOI
131 Dinh, K., Gucunski, N. and Duong, T.H. (2018), "An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks", Automat. Constr., 89, 292-298. DOI: 10.1016/j.autcon.2018.02.017.   DOI
132 Dong, C., Loy, C.C., He, K.M. and Tang, X.O. (2016), "Image super-resolution using deep convolutional networks", IEEE Trans. Pattern Anal. Mach. Intell., 38(2), 295-307. DOI: 10.1109/Tpami.2015.2439281.   DOI
133 Dong, C.Z., Ye, X.W. and Jin, T. (2018), "Identification of structural dynamic characteristics based on machine vision technology", Measurement, 126, 405-416. DOI: 10.1016/j.measurement.2017.09.043.   DOI
134 Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. DOI: 10.1016/j.conbuildmat.2018.08.011.   DOI
135 Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., Wu, S.K. and Zhu, Q. (2019), "CNN-based damage identification method of tied-arch bridge using spatial-spectral information", Smart. Struct. Syst., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507.   DOI
136 Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. DOI: 10.1016/j.autcon.2018.11.028.   DOI
137 LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324. DOI: 10.1109/5.726791.   DOI
138 Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., Iseley, T. and Starr, J. (2018), "Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks", Automat. Constr., 91, 273-283. DOI: 10.1016/j.autcon.2018.03.028.   DOI
139 Lake, B.M., Salakhutdinov, R. and Tenenbaum, J.B. (2015), "Human-level concept learning through probabilistic program induction", Science, 350(6266), 1332-1338. DOI: 10.1126/science.aab3050.   DOI
140 LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. DOI: 10.1162/neco.1989.1.4.541.   DOI
141 Li, D.S., Cong, A.R. and Guo, S. (2019), "Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification", Autom. Constr., 101, 199-208. DOI: 10.1016/j.autcon.2019.01.017.   DOI
142 LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. DOI: 10.1038/nature14539.   DOI
143 Lee, S., Ha, J., Zokhirova, M., Moon, H. and Lee, J. (2018), "Background information of deep learning for structural engineering", Arch. Comput. Method E., 25(1), 121-129. DOI: 10.1007/s11831-017-9237-0.   DOI
144 Li, C., Xu, P.J., Niu, L.J.L., Chen, Y., Sheng, L.S. and Liu, M.C. (2019), "Tunnel crack detection using coarse-to-fine region localization and edge detection", Wiley Interdiscip. Rev.-Data Mining Knowl. Discov., 9(5), e1308. DOI:10.1002/Widm.1308.
145 Li, R.X., Yuan, Y.C., Zhang, W. and Yuan, Y.L. (2018), "Unified vision-based methodology for simultaneous concrete defect detection and geolocalization", Comput.-Aided Civil Infrastruct. Eng., 33(7), 527-544. DOI: 10.1111/mice.12351.   DOI
146 Gao, X.W., Jian, M., Hu, M., Tanniru, M. and Li, S.Q. (2019), "Faster multi-defect detection system in shield tunnel using combination of FCN and Faster RCNN", Adv. Struct. Eng., 22(13), 2907-2921. DOI: 10.1177/1369433219849829.   DOI
147 Dung, C.V., Sekiya, H., Hirano, S., Okatani, T. and Miki, C. (2019), "A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks", Automat. Constr., 102, 217-229. DOI: 10.1016/j.autcon.2019.02.013.   DOI
148 Elman, J.L. (1990), "Finding structure in time", Cogn. Sci., 14(2), 179-211. DOI: 10.1207/s15516709cog1402_1.   DOI
149 Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolutional neural networks", Struct. Control. Health Monit., 26(10), e2433. DOI: 10.1002/Stc.2433.   DOI
150 Feng, D.M. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection - a review", Eng. Struct., 156, 105-117. DOI: 10.1016/j.engstruct.2017.11.018.   DOI
151 Gao, Y. and Spencer, B.F. (2007), "Experimental verification of a distributed computing strategy for structural health monitoring", Smart. Struct. Syst., 3(4), 455-474. DOI: 10.12989/sss.2007.3.4.455.   DOI
152 Gao, Y.Q., Kong, B.Y. and Mosalam, K.M. (2019), "Deep leaf-bootstrapping generative adversarial network for structural image data augmentation", Comput.-Aided Civil Infrastruct. Eng., 34(9), 755-773. DOI: 10.1111/mice.12458.   DOI
153 Gao, Y.Q. and Mosalam, K.M. (2018), "Deep transfer learning for image-based structural damage recognition", Comput.-Aided Civil Infrastruct. Eng., 33(9), 748-768. DOI: 10.1111/mice.12363.   DOI
154 Gibert, X., Patel, V. and Chellappa, R. (2017), "Deep multitask learning for railway track inspection", IEEE T. Intell. Transp. Syst., 18(1), 153-164. DOI: 10.1109/Tits.2016.2568758.   DOI
155 Shelhamer, E., Long, J. and Darrell, T. (2017), "Fully convolutional networks for semantic segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(4), 640-651. DOI: 10.1109/Tpami.2016.2572683.   DOI
156 Li, S.L., Guo, Y.P., Xu, Y. and Li, Z.L. (2019), "Real-time geometry identification of moving ships by computer vision techniques in bridge area", Smart. Struct. Syst., 23(4), 359-371. https://doi.org/10.12989/sss.2019.23.4.359.   DOI
157 Li, S.Y., Zhao, X.F. and Zhou, G.Y. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aided Civil Infrastruct. Eng., 34(7), 616-634. DOI: 10.1111/mice.12433.   DOI
158 Sajedi, S.O. and Liang, X. (2019), "A convolutional cost-sensitive crack localization algorithm for automated and reliable RC bridge inspection", arXiv preprint arXiv:1905.09716.
159 Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. DOI: 10.1016/j.engstruct.2018.05.084.   DOI
160 Schmidhuber, J. (2015), "Deep learning in neural networks: an overview", Neural Netw., 61, 85-117. DOI: 10.1016/j.neunet.2014.09.003.   DOI
161 Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016), "Mastering the game of Go with deep neural networks and tree search", Nature, 529(7587), 484-489. DOI: 10.1038/nature16961.   DOI
162 Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.T., Lillicrap, T., Hui, F., Sifre, L., Van Den Driessche, G., Graepel, T. and Hassabis, D. (2017), "Mastering the game of Go without human knowledge", Nature, 550(7676), 354-359. DOI: 10.1038/nature24270.   DOI
163 Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.