• Title/Summary/Keyword: Changes of state of water

Search Result 362, Processing Time 0.025 seconds

Hydraulic Characteristics Investigation due to the Change of GapWidth between Artificial Reefs (인공리프 개구폭 변화에 따른 흐름특성 고찰)

  • Kim, Kyu-Han;Shim, Kyu-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-415
    • /
    • 2016
  • Small fishing ports and coastal structures installed in a relatively low sea water depth disturb the wave induced current and cause the collapse of equilibrium state of sediment transport. These structures creates diffracted waves and matter the concentration of waves to cause the beach erosion. In order to mitigate these eroding problems on the beach, many counter measurements were proposed such as detached breakwater, groin or headland; however, these methods interrupt the aesthetic view of sandy beach due to the exposed structures above the sea level and have difficulty of applying to those beaches with the good scenery. Furthermore, some of these methods create secondary environmental problems after the installations. To eliminate these problems, one of the countermeasures, artificial reefs have been selected and used worldwide to minimize the disturbance of the scenery and secondary effects on the environment. Meanwhile, it is important to set the design elements for installing the artificial reefs such as that of length, opening width, clearing distances from the shoreline and more. Nevertheless, there are no construction manuals or standards for designing the artificial reefs with these important design elements yet. In this study, different conditions of artificial reefs were used with various cases throughout hydraulic model test to precisely analyze the changes of waves and currents to propose the standards of design elements to install the artificial reefs.

Stress Behavior of PSG/SiN Film for Passivation in Semiconductor Memory Device (반도체 소자의 표면보호용 PSG/SiN 절연막의 스트레스 거동)

  • Kim, Yeong-Uk;Sin, Hong-Jae;Ha, Jeong-Min;Choe, Su-Han;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.46-53
    • /
    • 1991
  • The stress of PSG (Phosphosilicate glass), USG (Undoped-silicate grass) and SiN films, which are mainly used as passivation layers in semiconductor memory devices, deposited by CVD methods has been studied as a function of film thickness and holding time in air. The stress of the PSG film or the USG film is increased in tensile state with increasing film thickness. On the other hand the stress level of the SiN film in compressive stress does not change as film thickness changes. The stress of PSG film shows the drastic change from the tensile stress to the compressive stress after the film is left 2 days in air. FTIR spectra indicated that the stress variation was due to the penetration of water molecule. It looks possible to recover the stress of about $2.5{\times}{10^9}dyne/cm^2$ by annealing treatment at $300^{\circ}C$ for 20min. The total stress of multi-layered films having the PSG film is determined mainly by the stress variation of PSG layer with holding time. The total stress of multi-layered film appears to have a functional relationship with the stress in the thickness of each film. The resistance against stress-migration of sputtered Al line increases with increasing the tensile stress for the PSG film or the USG film.

  • PDF

An Analysis of Best Practices for Efficient Utility Relocation and an Inquiry into the Applicability of SUE (효율적인 지하지장물 이설을 위한 모범사례분석 및 SUE 적용에 관한 연구)

  • Lee, Seung-Hyun;Baek, Seung-Ho;Tae, Yong-Ho;Ahn, Bang-Ryul;Park, Hyeon-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.971-976
    • /
    • 2007
  • In the U.S., utility damages or utility delay caused by conflicts during the underground utility relocation is one of the weighty problem in the construction industry. Also, in domestic case, delay and additional cost caused by underground utility(i.e, electricity, communication, gas, water supply and sewerage) relocation has been happened so that there is an increase of claims for responsibility between owners and contractors. However, there is insufficient survey for the recent circumstance of additional cost for delay and design changes caused by utility relocation and shortage of enough research for solving and analyzing of causes and their ripple effect. This research presents a result of the study about the best practices of FHWA(Federal Highway Administration), SHAs(State Highway Agencies) and the utility companies managing utility relocation. Also, it presents the basic concept of SUE(Subsurface Utility Engineering), the most reliable tool of FHWA presented, and investigates the developing status about SUE in Korea. At the end of this paper, this research proposes a practical and more applicable study about the efficient utility relocation focusing on local industry.

  • PDF

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

Toxicological Assessment to Environmental Stressors Using Exoskeleton Surface Roughness in Macrophthalmus japonicus: New Approach for an Integrated End-point Development (칠게 외골격 표면 거칠기를 이용한 노출 독성 평가: 새로운 융합적 연구)

  • Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.265-271
    • /
    • 2021
  • Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals(Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

A preliminary study of the hydraulic-geometrical relations of bed slope in some selected alluvial rivers (우리 나라 沖積河川 河床傾斜의 水理機何 特性에 관한 연구)

  • ;;;Woo, Hyoseop;Yu, Kwonkyu;Park, Jongkwan
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.253-265
    • /
    • 1994
  • The hydraulic-geometrica1 relations between the riverbed slope and water discharge and other hydraulic variables in some selected alluvial rivels in Korea have been investigated. The rivers from which the data relevant to this study were collected are mainly the first tributaries, considered to be mostly in the equilibrium state, of the 10 major rivers in Korea. The investigating methods adopted in this study are similar to the one suggested by Leopold and Maddock and the one suggested by Garde. All of 18 rivers their drainage areas of which range between 100-2,000 $\textrm{km}^2$ were considered and the changes in riverbed slope, drainage area, bed material size along the downstream river distance were measured. It is found in this study that the change in the riverbed slope, S, along the downstream can be expressed in terms of the coefficient, $\beta$, expressing the change in the drainage area along the downstream and the drainage area, A, by an empirical relation as 0.0063 0.0063 S = $S_{ 0}$ $A_{0}$$^{-------- +0.51}$A-$^{-------- -0.51}$. $\beta$ $\beta$ According to this relation, the riverbed slope of the river reaches investigated in this study appear to be proportional to the -0.6th power of the drainage area. This result is consistent with the previous ones obtained by Hack.k.

  • PDF

Effects of Storage Temperature on the Survival of Vibrio mimicus K-1 in Seawater and Arkshell (해수와 피조개에서 Vibrio mimicus K-1의 생존에 대한 보관온도의 영향)

  • KOH Byeong-Ho;LEE Won-Dong;ANN Sung-Kee;KIM Ji-Hoe;LEE Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.277-281
    • /
    • 1997
  • The cell density changes of Vibrio mimicus K-1 in sea water and arkshell feeding it were examined at various temperature. The strain was suspended in sterilized sea water and storaged at experimental temperature $(5,\;10,\;15,\;20,\;and\;28^{\circ}C)$). At intervals of up to 10 days, aliquots of each suspension were plated onto BHI agar. At 5 and $10^{\circ}C$, the plate counts of V. mimicus K-1 showed a rapid decline, which 3s known to be a reault of this bacterium's entering into the viable but non culturable state. At 20 and $28^{\circ}C$, however, V. mimicus K-1 are stable over the 10 days experimental periods. V. mimicus K-1 was fed to arkshell, which was subsequently stored at temperatures ranging from 5 to $20^{\circ}C$ for 10 days. The samples of arkshell were homogenized and plated at intervals to determine the cell density of V. mimicus K-1 and total aerobic population of bacteria present. At 5 and $10^{\circ}C$, the numbers of V. mimicus K-1 in sea water rapid decreased over the 10 days experimental periods. However, little change of V. mimicus K-1 density was observed in shellstock arkshell at 5 and $10^{\circ}C$. While, V. mimicus K-1 density was decreased more rapidly to level below limit of dectection in shucked arkshell at same temperature. Incubation at the higher temperature $(20^{\circ}C)$ resulted in large increase in total aerobic bacterial number of shellstock arkshell. These results suggest that even with proper storage, indigenous levels of V. mimicus may remain sufficiently high in shellstock arkshell to produce infection in compromise hosts.

  • PDF