• Title/Summary/Keyword: Changes of microflora

Search Result 120, Processing Time 0.028 seconds

The Changes of Intestinal Normal Flora in Neonates for Seven Days Postnatally (정상 신생아의 대변에서 생후 1주일 동안 장내세균총의 변화)

  • Sung, Nam-ju;Lee, Seung Gue;Kim, Me Jin;Kim, Young Ho;Yang, Seung;Hwang, Il Tae;Jung, Ji A;Lee, Hae Ran;Kim, Jae-Seok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.9 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Purpose: Microbial colonization of the intestine begins just after birth and development of the normal flora is a gradual process. The first bacteria colonizing the intestine in newborns are Staphylococcus, Enterobacteriaceae and Streptococcus. For several days after birth, the number of Bifidobacterium spp. increase. The aim of this study was to investigate the changes of microflora for seven days postnatally in neonatal stool. Methods: Fifteen neonates (breast : formula : mixed feeding 1 : 8 : 6, vaginal delivery : cesarean section 3 : 12) who were born at the Kangdong Sacred Heart Hospital, Hallym University were enrolled. First meconium and stools of postnatal 1-, 3-, and 7-day were innoculated. Blood agar plates for total aerobes, trypton bile X-glucuronide agar for E. coli, phenylethyl alcohol agar for gram positive anaerobes, MRS agar for Lactobacillus spp., bifidobacterium selective agar for Bifidobacterium spp. and cefoxitin-cycloserine-fructose agar for Clostridium difficile were used in the general incubator ($CO_2$ free incubator), $CO_2$ incubator or the anaerobic chamber for 48 or 72 hours at $37^{\circ}C$ and then colony forming units were counted. Results: No microflora was identified in the first meconium. Total aerobes, E. coli, and gram positive anaerobes were significantly increased with advancing postnatal days. In only one baby, Lactobacillus acidophilus was detected $2{\times}10^5CFU/g$ in the seven-day stool. Bifidobacterium spp. was detected in two babies. Clostridium difficile was not detected during the seven days. There were no significant differences in the bowel flora depending on the delivery pattern and feeding method. Conclusion: This study shows many changes in the intestinal normal flora in neonatal stool during seven days postnatally. If these findings are confirmed with larger studies, the data may be preliminary findings to support use of probiotics in neonates.

  • PDF

Ecological Environment and Rhizosphere Microflora in the Native Soil of Purple-Bracted Plantain Lily for Wild Vegetables (비비추 나물의 자생지 생태환경과 근권미생물상)

  • Cho, Ja-Yong;Heo, Buk-Gu;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.4
    • /
    • pp.389-400
    • /
    • 2005
  • This study was conducted to investigate into the ecological environments and the soil microflora of purple-bracted plantain lily (Hosta longipes Matsumura) for wild vgetables. Native soil textures of purple-bracted plantain lily were in the order of sandy loam (SL) > loam (L) > clay loam (CL). pH in soil was relatively acid by 4.8, electric conductivity was 0.08mS/cm, and organic matter content was 0.08g/kg. CEC was measured by $100.8cmol^{(+)}kg^{-1}$ and available phosphate was 103.4mg/kg. Contents of exchangeable cations in terms of potassium, calcium, and magnesium were measured by $0.33cmol^{(+)}kg^{-1},\;2.26cmol^{(+)}kg^{-1},\;and\;0.87cmol^{(+)}kg^{-1}$, etc. Diurnal changes in the air temperature of the natives were 15 to $20^{\circ}C$, that temperature differential was relatively little compared with that in open field by 15 to $30^{\circ}C$. Relative humidity in the natives were much more humid by 60 to 80% compared with that in open feld by 35 to 85%. Light intensity in the natives and the open field at ten o'clock were $2,300{\mu}mol/m^2/sec.\;and\;1,750{\mu}mol/m^2/sec.$ Total number of soil microorganisms were $8.4{\times}10^7\;c.f.u./g$. Mycorrhizal spore densities over $500{\mu}m,\;355{\sim}500{\mu}m,\;251{\sim}354{\mu}m,\;107{\sim}250{\mu}m\;and\;45{\sim}106{\mu}m$ were 0.8, 1.3, 2.1, 38.1, and 110.0 respectively. Mycorrhizal root infections by vesicle and hyphae were 17% and 6%. However, arbuscules in the roots were not shown.

  • PDF

Effect of Paecilomyces japonica on the Microbiological Quality and Shelf-life of Jeungpyun (눈꽃동충하초(Paecilomyces japonica)를 첨가한 증편의 미생물학적 품질특성 및 저장성)

  • Park Chan-Sung;Choi Mi-Ae;Park Geum-Soon
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.561-567
    • /
    • 2004
  • The purpose of this study was to investigate the effect of Paecilomyces japonica mycelia(PJM) on pH, titrable acidity and microbiological qualify of Jeungpyun(fermented rice cake). Jeungpyun prepared with $0\~\%$ of PJM stored at $5^{\circ}C\;and\;20^{\circ}C$ for 4 weeks and 7 days respectively. Before fermentation of Jeungpyun dough, viable cells of total bacterial counts(TBC), yeasts and lactic acid bacteria(LAB) were $6.0\~9.8\times10^6,\;5.3\~9.0\times10^6,\;5.4\~8.5\times10^6\;CFU/g$, respectively. During the fermentation of dough, viable cells of TBC, yeasts and LAB increased $0.3\~0.4$ log cycle and pH was decreased whereas acidity increased as the progress of fermentation. Total viable cells in Jeungpyun before storage were $5.0\times10^1\;CFU/g$. During storage of Jeungpyun, TBC, yeasts and LAB of control group increased 2.6, 2.4, 2.1 log cycle at $5^{\circ}C$ and 4.8, 4.6, 4.5 log cycle at $50^{\circ}C$, respectively, when reached at maximum level. Major microflora of Jeungpyun was composed of yeasts and LAB during fermentation of dough and storage at $5^{\circ}C\;and\;20^{\circ}C$. Addition of PJM, inhibited the growth of microorganisms, the changes of PH and titrable acidity of Jeungpyun during storage at both of $5^{\circ}C\;and\;20^{\circ}C$. From these results, the addition of PJM extended the shelf-life of Jeungpyun during storage at $5^{\circ}C\;and\;20^{\circ}C$.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

Identification of Lactic Acid Bacteria Involved in Traditional Korean Rice Wine Fermentation

  • Seo, Dong-Ho;Jung, Jong-Hyun;Kim, Hyun-You;Kim, Young-Rok;Ha, Suk-Jin;Kim, Young-Cheul;Park, Cheon-Seok
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.994-998
    • /
    • 2007
  • Changes in microflora, pH, reducing sugar content, lactic acid content, and ethanol content during Korean rice wine fermentation were investigated. Typical quality characteristics of Korean rice wine fermentation including pH, reducing sugar content, lactic acid content, and ethanol content were evaluated. While a fungus was not detected in our Korean rice wine mash, yeast was found to be present at fairly high quantities (1.44-4.76\;{$\times}\;10^8\;CFU/mL$) throughout the fermentation period. It is assumed that lactic acid bacteria (LAB) had effects on the variations of fragrance and flavor for traditional Korean rice wine. The main LAB during the Korean rice wine fermentation was determined and identified as a Gram-positive, straight rod-shaped cell. Genotypic identification of the isolated strain by amplification of its 16S rRNA sequence revealed that the isolated strain was most closely related to Lactobacillus plantarum (99%) strains without any other comparable Lactobacillus strains. Therefore, we designated the major LAB identified from traditional Korean rice wine fermentation as L. plantarum RW.

Fecal Microflora of Korean Neonates (한국인 신생아의 분변 미생물 균총)

  • Lee, Seung-Gyu;Jeong, Seok-Geun;Oh, Mi-Hwa;Kim, Dong-Hun;Kang, Dae-Kyung;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Probiotic bacteria have been administered to neonates to serve as maturational stimuli for the developing gut and intestinal immune system, establish and develop the intestinal microbiota, and mediate host-microbe interactions; further, these bacteria have shown beneficial effects In the treatment and reduction of the risk of infectious diseases, necrotizing enterocolitis, and atopic disease. An LAB isolation project to identify effective lactic acid bacteria for Korean people is in progress. The average total counts of lactic acid bacteria, lactobacilli, bifidobacteria, and coliforms in the fecal samples from 2 provinces were estimated as 8.31, 5.98, 8.13, and 3.01 CFU/g. Additional samples from other provinces will be analyzed to examine the changes in the lactic bacterial counts according to the area, sex of the neonate, mode of delivery, and type of feeding. A database containing the 16S rDNA sequences and the ribosomal protein profile of all the lactic acid bacteria isolated from fecal samples will be constructed. For the effective use of probiotics, a number of clinical studies are needed to formulate guidelines for strain, subject, purpose, and dose.

  • PDF

Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

  • Jung, Tae-Hwan;Park, Jeong Hyeon;Jeon, Woo-Min;Han, Kyoung-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS: Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS: Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS: Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate potentially stimulates the MAPK signaling pathway in intestinal cells, which is positively correlated with gut defense.

Characterization of tet(M) and tet(G) Genes among Tetracycline-resistant Aeromonas spp. Isolated from Imported Ornamental Fishes (수입산 관상어로부터 분리된 tetracycline 내성 Aeromonas spp.에 tet(M) 및 tet(G) 유전자의 특성 분석)

  • Park, Shin-Hoo;Jun, Lyu-Jin;Cho, Ki-Taek;Jin, Ji-Woong;Jeong, Hyun-Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • In this study, the molecular structures of tet(M) and tet(G) carried by tetracycline (Tc) resistant bacteria in intestinal microflora from the imported ornamental fish were characterized and compared with each other depend on the imported countries. Of the total isolates, approximately 8.9% of the Ent-lac+(lactose fermentative bacteria on coliform media) Tc resistant isolates in fish from three different countries, Singapore, Taiwan and Brazil, were appeared to contain tet(M). Three representative isolates of different countries, Aeromonas spp. JSM-1 (Singapore), JTM-1 (Taiwan) and JBM-1 (Brazil), were isolated and analyzed the molecular structures of tet(M) gene. Interestingly, partial sequence of tet(M) genes (1099 bp) in JBM-1 (Brazil) showed 99.5% homology with the tet(M) found in the Vibrio spp. RV16 isolate, obtained from marine fish in Korea and known to carry Tn1545 parent type of tet(M). In contrast, tet(M) gene in JSM-1 and JTM-1 showed mosaic structure of Tn1545 and Tn916, and 100% homology with each other. It may suggest the presence of various characteristics in terms of tet(M) gene structure. The determined sequence of the tet(G) from Aeromonas spp. JSG-1 and JBG-1 isolated from Singapore and Indonesia ornamental fish respectively showed similar nucleotide sequence homology but revealed a few nucleotide changes in comparison with the sequence of the prototype tet(G) gene (S52437 in GenBank).

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

  • Jung, Jee-Youn;Kim, Il-Yong;Kim, Yo-Na;Kim, Jin-Sup;Shin, Jae-Hoon;Jang, Zi-Hey;Lee, Ho-Sub;Hwang, Geum-Sook;Seong, Je-Kyung
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.419-424
    • /
    • 2012
  • High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.