Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.7.248

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode  

Jung, Jee-Youn (Korea Basic Science Institute)
Kim, Il-Yong (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University)
Kim, Yo-Na (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University)
Kim, Jin-Sup (Korea Basic Science Institute)
Shin, Jae-Hoon (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University)
Jang, Zi-Hey (Korea Basic Science Institute)
Lee, Ho-Sub (Department of Physiology, College of Oriental Medicine, Wonkwang University)
Hwang, Geum-Sook (Korea Basic Science Institute)
Seong, Je-Kyung (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University)
Publication Information
BMB Reports / v.45, no.7, 2012 , pp. 419-424 More about this Journal
Abstract
High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.
Keywords
Etabolomics; High-fat diet; High-carbohydrate diet; Metabolite profiling; $^1H$ NMR;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Erdei, N., Toth, A., Pasztor, E. T., Papp, Z., Edes, I., Koller, A. and Bagi, Z. (2006) High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase- derived superoxide anion. Am. J. Physiol. Heart. Circ. Physiol. 291, H2107-2115.   DOI   ScienceOn
2 Houstis, N., Rosen, E. D. and Lander, E. S. (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 440, 944-948.   DOI   ScienceOn
3 Zhou, S. S., Li, D., Sun, W. P., Guo, M., Lun, Y. Z., Zhou, Y. M., Xiao, F. C., Jing, L. X., Sun, S. X., Zhang, L. B., Luo, N., Bian, F. N., Zou, W., Dong, L. B., Zhao, Z. G., Li, S. F., Gong, X. J., Yu, Z. G., Sun, C. B., Zheng, C. L., Jiang, D. J. and Li, Z. N. (2009) Nicotinamide overload may play a role in the development of type 2 diabetes. World J. Gastroenterol. 15, 5674-5684.   DOI
4 Li, D., Sun, W. P., Zhou, Y. M., Liu, Q. G., Zhou, S. S., Luo, N., Bian, F. N., Zhao, Z. G. and Guo, M. (2010) Chronic niacin overload may be involved in the increased prevalence of obesity in US children. World J. Gastroenterol. 16, 2378-2387.   DOI
5 Kim, I. Y., Jung, J., Jang, M., Ahn, Y. G., Shin, J. H., Choi, J. W., Sohn, M. R., Shin, S. M., Kang, D. G., Lee, H. S., Bae, Y. S., Ryu do, H., Seong, J. K. and Hwang, G. S. (2010) $^{1}H$ NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem. Biophys. Res. Commun. 403, 428-434.   DOI   ScienceOn
6 Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H. and Nicholson, J. K. (2011) Understanding the role of gut microbiome- host metabolic signal disruption in health and disease. Trends. Microbiol. 19, 349-359.   DOI   ScienceOn
7 Kanarek, R. B. and Orthen-Gambill, N. (1982) Differential effects of sucrose, fructose and glucose on carbohydrate-induced obesity in rats. J. Nutr. 112, 1546-1554.   DOI
8 Skov, T., van den Berg, F., Tomasi, G. and Bro, R. (2006) Automated alignment of chromatographic data. J. Chemom. 20, 484-497.   DOI   ScienceOn
9 Eriksson, L., Andersson, P. L., Johansson, E. and Tysklind, M. (2006) Megavariate analysis of environmental QSAR data. Part I--a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Divers 10, 169-186.   DOI
10 Abbott, W. G., Howard, B. V., Christin, L., Freymond, D., Lillioja, S., Boyce, V. L., Anderson, T. E., Bogardus, C. and Ravussin, E. (1988) Short-term energy balance: relationship with protein, carbohydrate, and fat balances. Am. J. Physiol. 255, E332-337.
11 Flatt, J., Ravussin, E., Acheson, K. J. and Jequier, E. (1985) Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J. Clin. Invest. 76, 1019.   DOI
12 Hill, J. O., Peters, J. C., Reed, G. W., Schlundt, D. G., Sharp, T. and Greene, H. L. (1991) Nutrient balance in humans: effects of diet composition. Am. J. Clin. Nutr. 54, 10-17.   DOI
13 Bremer, J. (1983) Carnitine--metabolism and functions. Physiological. reviews 63, 1420.   DOI
14 Zubritsky, E. (2006) Diet and time of day strongly influence metabolomic studies. Anal. Chem. 78, 7907.   DOI   ScienceOn
15 Nicholson, J. K., Lindon, J. C. and Holmes, E. (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29, 1181-1189.   DOI   ScienceOn
16 Jung, J., Park, M., Park, H. J., Shim, S. B., Cho, Y. H., Kim, J., Lee, H. S., Ryu do, H., Choi, D. and Hwang, G. S. (2011) (1)H NMR-based metabolic profiling of naproxen-induced toxicity in rats. Toxicol. Lett. 200, 1-7   DOI   ScienceOn
17 Winnike, J. H., Busby, M. G., Watkins, P. B. and O'Connell, T. M. (2009) Effects of a prolonged standardized diet on normalizing the human metabolome. Am. J. Clin. Nutr. 90, 1496-1501.   DOI
18 Kim, S. H., Yang, S. O., Kim, H. S., Kim, Y., Park, T. and Choi, H. K. (2009) 1H-nuclear magnetic resonance spectroscopy- based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal. Bioanal. Chem. 395, 1117-1124.   DOI
19 Murray, K. N. and Chaykin, S. (1966) The reduction of nicotinamide N-oxide by xanthine oxidase. J. Biol. Chem. 241, 3468-3473.
20 Schrauwen, P., Wagenmakers, A. J., van Marken Lichtenbelt, W. D., Saris, W. H. and Westerterp, K. R. (2000) Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes. 49, 640-646.   DOI   ScienceOn
21 Riederer, M., Erwa, W., Zimmermann, R., Frank, S. and Zechner, R. (2009) Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis. 204, 412-417.   DOI   ScienceOn
22 Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, I. (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752-1761.   DOI   ScienceOn
23 Duncan, K. H., Bacon, J. A. and Weinsier, R. L. (1983) The effects of high and low energy density diets on satiety, energy intake, and eating time of obese and nonobese subjects. Am. J. Clin. Nutr. 37, 763-767.   DOI
24 Kleemann, R., Verschuren, L., van Erk, M. J., Nikolsky, Y., Cnubben, N. H., Verheij, E. R., Smilde, A. K., Hendriks, H. F., Zadelaar, S., Smith, G. J., Kaznacheev, V., Nikolskaya, T., Melnikov, A., Hurt-Camejo, E., van der Greef, J., van Ommen, B. and Kooistra, T. (2007) Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome. Biol. 8, R200.   DOI
25 Shearer, J., Duggan, G., Weljie, A., Hittel, D. S., Wasserman, D. H. and Vogel, H. J. (2008) Metabolomic profiling of dietary- induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes. Obes. Metab. 10, 950-958.   DOI   ScienceOn
26 Cheng, K.-K., Benson, G. M., Grimsditch, D. C., Reid, D. G., Connor, S. C. and Griffin, J. L. (2010) Metabolomic study of the LDL receptor null mouse fed a high-fat diet reveals profound perturbations in choline metabolism that are shared with ApoE null mice. Physiol. Genomic. 41, 224-231.   DOI   ScienceOn
27 Horton, T. J., Drougas, H., Brachey, A., Reed, G. W., Peters, J. C. and Hill, J. O. (1995) Fat and carbohydrate overfeeding in humans: different effects on energy storage. Am. J. Clin. Nutr. 62, 19-29.   DOI
28 Stubbs, R., Ritz, P., Coward, W. and Prentice, A. (1995) Covert manipulation of the ratio of dietary fat to carbohydrate and energy density: effect on food intake and energy balance in free-living men eating ad libitum. Am. J. Clin. Nutr. 62, 330.   DOI
29 Garg, A., Bonanome, A., Grundy, S. M., Zhang, Z. J. and Unger, R. H. (1988) Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin- dependent diabetes mellitus. N. Engl. J. Med. 319, 829-834.   DOI   ScienceOn
30 Kamari, Y., Grossman, E., Oron-Herman, M., Peleg, E., Shabtay, Z., Shamiss, A. and Sharabi, Y. (2007) Metabolic stress with a high carbohydrate diet increases adiponectin levels. Horm. Metab. Res. 39, 384-388.   DOI   ScienceOn
31 Kang, H., Greenson, J. K., Omo, J. T., Chao, C., Peterman, D., Anderson, L., Foess-Wood, L., Sherbondy, M. A. and Conjeevaram, H. S. (2006) Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am. J. Gastroenterol. 101, 2247.   DOI   ScienceOn
32 Connor, W. E., Connor, S. L., Katan, M. B., Grundy, S. M. and Willett, W. C. (1997) Should a low-fat, high-carbohydrate diet be recommended for everyone? N. Engl. J. Med. 337, 562-567.   DOI   ScienceOn
33 Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. and Kell, D. B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends. Biotechnol. 22, 245-252.   DOI   ScienceOn
34 George, V., Tremblay, A., Despres, J. P., Leblanc, C. and Bouchard, C. (1990) Effect of dietary fat content on total and regional adiposity in men and women. Int. J. Obes. 14, 1085-1094.
35 Du, S., Mroz, T. A., Zhai, F. and Popkin, B. M. (2004) Rapid income growth adversely affects diet quality in China-particularly for the poor! Soc. Sci. Med. 59, 1505-1515.   DOI   ScienceOn
36 Park, H. S., Oh, S. W., Cho, S. I., Choi, W. H. and Kim, Y. S. (2004) The metabolic syndrome and associated lifestyle factors among South Korean adults. Int. J. Epidemiol. 33, 328-336.   DOI   ScienceOn
37 Dreon, D. M., Frey-Hewitt, B., Ellsworth, N., Williams, P. T., Terry, R. B. and Wood, P. D. (1988) Dietary fat:carbohydrate ratio and obesity in middle-aged men. Am. J. Clin. Nutr. 47, 995-1000.   DOI