• Title/Summary/Keyword: Changes in cultivation environment

Search Result 173, Processing Time 0.022 seconds

Variations in Root and Tuber Crops Production due to Climate Change

  • Hwang, Sung-Eun;Chon, Chun-Hwang;Park, Geon-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Climate change which occuring the recent abrupt fluctuations in meteorological and climatological elements is bound, brings about more significant impacts and changes in human life One of the most important problems due to the impacts of climate change tends to have been decreased the food production, which is expected to make crop resources more and more important. Accordingly, agricultural meteorology should also become more important. In this study, the correlation between meteorological elements and root and tuber crops (potatoes and sweet potatoes), which are emergency crops, and meteorological elements were analyzed, and the impacts of climate changes on the production of such crops were examined. This study concludes that agriculture and food resources are important, and suggests that we should prepare for changes in crops, the weaponization of food, and the lack of water resources in the future. The meteorological element and crops element correlation analysis results. Sweet potatoes, which are negatively influenced by climate change, need breeding improvement and cultivation method development, and potatoes, which are positively influenced by climate change, require preparations for climate changes that exceed the climatic limit. The variations of agricultural production contributed to changes in crop production. Therefore, the importance of agricultural meteorology and the food crop industry should be fully recognized to prepare for climate change.

Patterns in Benthic Polychaete Community and Benthic Health Assessment at Longline and Bottom Culture Shellfish Farms in Gangjin Bay, Namhae, Korea (남해 강진만 수하식 및 살포식 패류양식장의 다모류군집구조 양상과 저서생태계 건강도 평가)

  • Sunyoung Kim;Sang-Pil Yoon;Sohyun Park;Rae Hong Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • This study was conducted to investigate the changes in the structure of benthic communities resulting from aquaculture activities and to assess the benthic health status of surface sediment in Gangjin Bay, a region known for concentrated shellfish aquaculture on the southern coast of Korea. Survey stations were divided into longline culture, bottom culture, and non-cultivation areas. The spatiotemporal distribution of physiochemical factors such as the grain size, water temperature, salinity, and total organic carbon in Gangjin Bay showed no significant differences between sampling stations. However, the species number, density, and diversity were relatively lower at the sampling stations in the bottom culture areas than at the other stations throughout the entire survey period. Cluster analysis and principal coordinates analysis also clearly distinguished the benthic communities in the bottom culture areas from those in the other sampling areas. At the sampling stations in the longline culture and non-cultivation areas, Scolectoma longifolia and Sigambra tentaculata, which are indicator species of organically enriched areas, appeared as dominant species. However, excluding some stations influenced by physical factors such as the water depth and current speed, the occupancy rate was not high. The health assessment results, conducted using the fisheries environment assessment method, revealed good conditions with Grades 1 and 2 across the entire area. However, an examination of the spatiotemporal changes in benthic communities and the benthic health index indicated that the benthic environment in the bottom culture areas was affected by physical disturbances.

Changes in Flowering Date and Yielding Characteristics Affected by Transplanting Date in the Early-maturing Rice Cultivar 'Joun' in the Mid-northern Inland of Korea (중북부 중간지대에서 극조생 벼 품종 '조운'의 기계이앙 시기에 따른 개화기 및 수량특성 변화)

  • Yang, Woonho;Kim, Myeong-Ki;Kang, Shingu;Park, Jeong-Hwa;Kim, Sukjin;Choi, Jong-Seo;Yang, Chang-Ihn;Back, Nam-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.4
    • /
    • pp.304-310
    • /
    • 2017
  • This study was conducted over a 3-year period from 2013 to 2015 in the mid-northern inland, Cheolweon, Korea, to investigate changes in flowering date, daily mean temperature during grain filling, and yield characteristics affected by transplanting date in an early-maturing rice variety, 'Joun'. Thirty-day-old seedlings were transplanted at four different dates at 15-day interval from May 5 to June 19. Flowering dates were July 16, July 21, July 31, and August 14 when transplanting was performed on May 5, May 20, June 4, and June 19, respectively. Late transplanting resulted in higher daily mean temperature before flowering but late-transplanted rice required fewer days and lower cumulative temperature to reach flowering from transplanting. As transplanting was delayed, daily mean temperature for 40 days after flowering decreased, whereas daily sunshine hours for the same period increased, with a temperature of $24.8^{\circ}C$ and sunshine for 5.8 hours being recorded at the transplanting on May 5, and with a temperature of $21.0^{\circ}C$ and sunshine for 7.7 hours at the transplanting on June 19. With late transplanting, panicles per square meter significantly decreased, whereas spikelets per panicle showed an increasing trend. Regression analysis showed that maximum head rice yield was attained from the transplanting on May 18, for which the flowering date was July 21, and daily mean temperature for 40 days from that flowering date was $24.6^{\circ}C$. A decrease in head rice yield by 5% and 10% of the maximum was observed for rice transplanted on June 6 and June 15, which resulted in flowering dates of August 2 and August 11, respectively, and the daily mean temperatures for 40 days from flowering were 23.2 and $21.7^{\circ}C$, respectively. Therefore, in mid-northern inland, it is recommended to transplant 'Joun' on May 18 to induce flowering on July 21, when grain filling is subjected to a daily mean temperature of $24.6^{\circ}C$ during active filling stage.

Forced Ventilation Number of Air Changes to Set Point of Inside Air Temperature in Summer Glasshouse (여름철 유리온실의 목표온도 유지를 위한 강제환기 회수)

  • 우영회;이정명;남윤일
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.223-231
    • /
    • 1995
  • Judicious control of high temperature is the most important task for a successful intensive - cultivation in greenhouses during the hot summer. Therefore, the climatological data at 31 locations in Korea were calculated using the modified model equation for ventilated in glasshouses during summer. Furthermore, the adequate number of air- changes or frequency of ventilation was estimated based on temperature settings, which is considered to be more active means of controlling summer glasshouse temperatures, was investigated. The major results can be summarized as follows: Forced ventilation of one air change per minutes was effective in maintaining the maximum air temperature below 35$^{\circ}C$ in the glasshouse haying 40% shading. It was impossible, however, to maintain air temperature below 3$0^{\circ}C$ in 40% shaded glasshouse with forced ventilation only.

  • PDF

Mushroom growth and cultivation environment at cultivation house of vinyl bag cultivation Shiitake mushroom on high-temperature period (고온기 표고 톱밥재배용 재배사 내의 환경 제어시스템과 버섯생육 온도)

  • Jhune, Chang-Sung;Kong, Won Sik;Park, Hye-Sung;Cho, Jae-Han;Lee, Kang-Hyo
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2014
  • Although sawdust cultivation of shiitake (Lentinula edodes) is becoming more common, it is insufficiently competitive in spring and autumn, the best time to breed shiitake. Thus, it is urgently needed to develop a technique for all year round cultivation of shiitake using mushroom growing beds. In the present study, the temperature changes according to the location of shiitake cultivation facilities were investigated. We confirmed that a refrigerator, an air conditioner, triple membranes, shiitake cultivation beds, fog nozzles which were installed in the shiitake cultivation facilities play an important role in keeping the low temperature. Bag cultivation of shiitake was tested in temperature variation from $14^{\circ}C$ to $29^{\circ}C$ with a $3^{\circ}C$ interval to know its cultivating temperature range in hot summer season. In summary, the sawdust cultivation of shiitake is possible when the temperature difference between top and bottom is maintained below $1^{\circ}C$. And the temperature of the shiitake cultivation facilities should be maintained below $23^{\circ}C$ in the induction period for fruitbody formation.

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum (새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링)

  • Lee, Seong-Won;Kang, Bang-Hun;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.114-124
    • /
    • 2022
  • The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

Projecting suitable habitats considering locational characteristics of major wild vegetables and climate change impacts

  • Choi, Jaeyong;Lee, Sanghyuk
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.661-670
    • /
    • 2019
  • In this study, we constructed a model of an area where the production and production amount of wild vegetables which are designated as short term income forest products for the whole country are self-sufficient for the representative Eastern Braken fern(Pteridium aquilinum)and Edible aster(Aster scaber). The difference between the existing cultivation site and the model result was examined, and the distribution of the cultivable area was simulated according to the near future climate change by the 2050s. The degree of agreement between the cultivated area and the actual native area was very low at 14.5% for Eastern Braken fern and 12.9% for Edible aster. Using the Maxent model, which has already been proven by many research examples, the cultivation maps through the model can guarantee statistical accuracy by considering many variables. To analyze future location changes, the RCP 4.5 scenario and the RCP 8.5 scenario were applie Edible aster d to predict potential future cultivable areas and compare them to the present. There was no decrease in the cultivable area due to climate change nationwide. However, in the RCP 8.5 scenario for Eastern Braken fern and the RCP 4.5 scenario for Edible aster, declining areas such as Gangwon-do, Jeollabuk-do and Gyeongsangbuk-do showed prominence according to the scenarios. The result of this study suggests that various models can be used for the production of short-term forest productivity maps and it will be used as a climate change impact assessment data for competitive forest products considering the influence of future climate change.

Changes of Growth and Yield by using Rootstocks in Tomato (대목사용에 따른 토마토의 생육 및 수량 변화)

  • Lee, Hyewon;Hong, Kue Hyon;Kwon, Deok Ho;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.456-463
    • /
    • 2020
  • This research was conducted to examine the changes in yield and difference in growth, using rootstocks in tomatoes as the growth indicators. Seedlings of tomato 'Gama', were used as scion and non-grafted control, while 4 different grafted tomatoes 'Powerguard', 'T1', 'L1', and 'B.blocking' were used as rootstocks. The non-grafted and grafted plants were grown in hydroponics for long-duration cultivation under plastic greenhouse conditions. The total yield of grafted tomato 'Powerguard' and non-grafted tomato 'Gama' were 8,428 g and 7,645 g, respectively. The flowering position of grafted plants 'B.blocking' and non-grafted plants at the latter period were 17.58 cm and 14.92 cm, respectively. The results showed that the yield and the balance of the plant were improved until the end of the harvest by grafting. The difference in yield between non-grafted and grafted tomatoes was evident in the 19th cluster, 236 days after planting. Therefore using rootstocks could be advantageous for long-duration cultivation in tomatoes.

Changes of Soil Properties and Temperature by Green Manure under Rice-based Cropping System

  • Jeon, Weon-Tai;Kim, Min-Tae;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.413-416
    • /
    • 2008
  • The cultivation of green manure crop is considered as a good management practice by increasing soil organic matter and fertility levels. This experiment was conducted to improve the soil environment under rice-based cropping system at paddy soil (fine loamy, mixed, nonacid, mesic, family of Aeric Fluventic Haplaquepts) in National Institute of Crop Science (NICS), Korea in 2006 to 2007. The variation of soil temperature in green manure plots was lower than without green manure (control) during spring season (April to May). The temperature variation of no tillage plot (broadcast before rice harvest) was the lowest among treatments. After green manure cropping, the soil bulk density and porosity ratio were improved at the top soil. The production of green manure was the highest athairy vetch and barley mixture plot by partial tillage. However, mixture treatment had no improvement on soil organic matter. After rice cropping with green manure application, soil quality was improved such as soil physical properties except mixture treatment. Therefore, we suggest that soil quality should be improved by green manure cultivation under rice-based cropping system.

Status and Changes in Chemical Properties of Upland Soil from 2001 to 2017 in Korea (한국 밭토양 화학성 변동 평가)

  • Kim, Yi-Hyun;Kong, Myung-suk;Lee, Eun-Jin;Lee, Tae-Goo;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.213-218
    • /
    • 2019
  • BACKGROUND: Monitoring of the dynamic changes of chemical properties in agricultural land is very important for agricultural sustainability. Chemical properties of agricultural soils in Korea have been investigated at four-year interval in the order of paddy, plastic film house, upland, and orchard soils since 1999. METHODS AND RESULTS: Total 8,160 topsoil samples were taken from the upland in 2001, 2005, 2009, 2013, and 2017, respectively. Soil chemical properties such as pH, electrical conductivity (EC), organic matter (OM), available phosphate (Avail. $P_2O_5$), and exchangeable (Exch.) cations (K, Ca, and Mg) were analyzed. Soil pH and Exch. Ca contents have increased since 2001. Average concentration of Avail. $P_2O_5$ increased from $547mg\;kg^{-1}$ in 2001 to $657mg\;kg^{-1}$ in 2017. Average concentration of Exch. Ca in 2017 was higher than the upper limit of its optimal range for upland cultivation. Excess and deficiency of chemical properties of upland soils comply with soil analysis and fertilizer prescription. CONCLUSION: We concluded that excessive nutrient in upland needed to be properly managed with soil test.