DOI QR코드

DOI QR Code

새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum

  • 이성원 (전북대학교 농업생명과학대학 지역건설공학과) ;
  • 강방훈 (농촌진흥청 디지털농업추진단) ;
  • 서일환 (전북대학교 농업생명과학대학 지역건설공학과)
  • Lee, Seong-Won (Jeonbuk National University, College of Agriculture & Life Sciences, Department of Rural Construction Engineering) ;
  • Kang, Bang-Hun (Digital Agriculture Promotion Team, RDA) ;
  • Seo, Il-Hwan (Jeonbuk National University, College of Agriculture & Life Sciences, Department of Rural Construction Engineering)
  • 투고 : 2022.01.26
  • 심사 : 2022.04.26
  • 발행 : 2022.04.30

초록

새만금은 염분과 미사질 토양으로 인해 지표면이 건조하고 함수율이 낮아 다른 지역에 비해 식생피복이 낮다. 식생 피복도가 낮은 지역에서는 바람에 의한 침식으로 인해 먼지가 비산될 가능성이 높습니다. 새만금 간척지에서 견딜 수 있는 작물을 재배하여 식생 피복도를 높이면 바닥의 유속을 줄여 비산먼지를 줄일 수 있다. 따라서 본 연구의 목적은 새만금 간척지에 겨울철 동계 밭작물을 재배하여 미세먼지 및 비산먼지 발생을 억제하는 효과를 분석하는 것이다. 새만금 간척지에서 보리 0.5ha, 라이밀 0.5ha를 재배하는 동안 농작업 및 생육단계에 따라 미세먼지 농도를 모니터링하였다. PM-10, PM-2.5 및 PM-1.0 농도의 변화는 풍하측, 풍상측, 경작지 내부를 중심으로 모니터링하였다. 모니터링 결과 PM-1.0은 작물 재배에 거의 영향을 미치지 않는 것으로 나타났으며, PM-10과 PM-2.5의 농도는 경운과 수확에 따라 증가하였고 수확에 비해 경운 시 PM-10과 PM-2.5의 농도 증가가 더 높았다. 작물의 생육단계에 따라 비산먼지 억제효과를 보였으며, 유묘기보다 출수기에서 비산먼지 억제효과가 높게 나타났다. 따라서 토지피복효과 이외에 캐노피에 따른 비산먼지 억제효과가 있음을 알 수 있었다. 본 연구를 통해 작물재배에 따른 비산먼지 발생 및 억제 효과에 대해 알 수 있었다.

The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

키워드

과제정보

본 연구는 농촌진흥청 국립농업과학원 연구사업(세부과제번호: PJ0142692021)의 지원에 의해 이루어진 것임.

참고문헌

  1. Bitog J.P., I.B. Lee, M.H. Shin, S.W. Hong, H.S. Hwang, I.H. Seo, J.I. Yoo, K.S. Kwon, Y.H. Kim, and J.W. Han 2009, Numerical simulation of an array of fences in Saemangeum reclaimed land. Atmos Environ 43:4612-4621. doi:10.1016/j.atmosenv.2009.05.050
  2. Choi J.M., W.J. Park, and M.J. Gim 2014, Relationship between land cover change and socio-economic change, and spatial query for time series data in the Saemangeum area. Geogr J Korea 48:363-373. (in Korean)
  3. Clean air policy support system (CAPSS) 2021, 2018 National air pollutants emission. Ministry of Environment, Sejong, Korea. 11-1481019-000001-10 (in Korean)
  4. Fairbairn A.S., and D.D. Reid 1958, Air pollution and other local factors in respiratory disease. Br J Prev Soc Med 12:94-103. doi:10.1136/jech.12.2.94
  5. Grains research and development corporation (GRDC) 2018, GRDC Grownotes - triticale. GRDC, Barton, Australia.
  6. Hwang H.S., I.B. Lee, M.H. Shim, S.W. Hong, I.H. Seo, J.I. Ryu, J.P., Bitog, K.S. Kwon, and Y.H. Kim 2009, Monitoring of the fugitive and suspended dust dispersion at the reclaimed land and neighboring farms: monitoring in Gim-Je. J Korean Soc Agric Eng 51:59-67. (in Korean) doi:10.5389/KSAE.2008.50.4.039
  7. Hwang H.S., I.B. Lee, M.H., Shim, S.W. Hong, I.H. Seo, J.I. Ryu, and S.K. Lee 2008, Monitoring of the fugitive and suspended dust dispersion at the reclaimed land and neighboring farms: monitoring in Gunsan. J Korean Soc Agric Eng 50:39-50. (in Korean) doi:10.5389/KSAE.2008.50.4.039
  8. Hyun B.K., C.H. Ryu, S.B. Lee, C.W. Lee, Y.S. Song, and D.B. Lee 2021, Reduction of fugitive dust by soil management practices for barley and reed in Saemangeum reclaimed land. Korean J Soil Sci Fert 54:58-67. (in Korean) doi:10.7745/KJSSF.2021.54.1.058
  9. Ju J.I., H.G. Choi, Y.S. Gang, J.J. Lee, K.H. Park, and H.B. Lee 2009, Changes of growth and forage yield at different cutting dates among five winter cereals for whole crop silage in middle region. J Kor Grassl Forage Sci 29:111-120. (in Korean) https://doi.org/10.5333/KGFS.2009.29.2.111
  10. Kim E.K., Y.S. Jung, H.G. Jeong, Y.K. Joo, and S.U. Chun 2007, Vegetation distribution of intertidal zone and estuary area on anseo port in Saemangeum reclamation zone. Kor J Env Eco 21:494-505. (in Korean)
  11. Kim H.G. 2005, Optimization of fugitive dust control system for meterological conditions. J KOSAE 21:573-583. (in Korean)
  12. Kim J.K., D.H. Kim, S.H. Joo, and M.C. Lee 2018, Research on characteristics of multifunctional soil binder based on polyacrylamide. Appl Chem Eng 29:155-161. (in Korean) doi:10.14478/ace.2017.1103
  13. Kim S., T.K. Kim, J.H. Jeong, C.H. Yang, J.H. Lee, W.Y. Choi, Y.D. Kim, S.J. Kim, and K.Y. Seong 2012, Characteristics of vegetation on soils having different salinity in recently reclaimed Saemangeumin region of Korea. Korean J Weed Sci 32:1-9. (in Korean) doi:10.5660/KJWS.2012.32.1.1
  14. Kim Y.J., J.H. Ryu, S.H. Lee, Y.Y. Oh, S. Kim, J. Jung, H.C. Hong, Y.D. Kim, and S.L. Kim 2016, Spatio-temporal distribution characteristics of the soil salinity in Saemangeum gyehwa newly reclaimed land. J Korean Soc Int Agric 28:113-117. (in Korean) doi:10.12719/KSIA.2016.28.1.113
  15. Kim Y.S., S.B. Jin, J.R. Choi, Y.H. Park, K.R. Lee, and Y.J. Lee 2013, A new paradigm to revitalize Saemangeum farmland: Benchmarking from Seosan farm. Institute for Intercultural Communication, pp 45-67. (in Korean)
  16. Kwak J.H., S.I. Yun, B.R. Choi, G.Y. Kim, and K.S. Lee 2021, Winter forage crops reduced fine dust in Saemangeum reclaimed tideland during high concentration of fine dust season. Korean J Soil Sci Fert 54:588-600. (in Korean) doi:10.7745/KJSSF.202154.4588
  17. Li Z., C. Xiahong, and T. Xi 2018, The impact of fine particulate matter (PM2.5) on China's agricultural production from 2001 to 2010. J Clean Prod 178:133-141. doi:10.1016/j.jclepro.2017.12.204
  18. Ministry of Environment 2021, Fugitive dust management manual, Ed 2021. 01. Sejong, Korea, pp 3-6. (in Korean)
  19. Park K.C., and S.J. Lee 2000, Shelter effect of porous fences on the saltation of sand particles in an atmospheric boundary layer. Trans Korean Soc Mech Eng B 24:1175-1184. (in Korean) doi:10.22634/KSME-B.2000.24.9.1175
  20. Park S.I., H.S. Kim, S.H. Jeong, H. Kim, S.H. Lee, and H.J. Kim 2013, Analysis of the windbreak facilities in the western and southern coasts in Korea. J Agric Life Sci 44:21-24. (in Korean)
  21. Pope C.A., and D.W. Dockery 2006, Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709-742. doi:10.1080/10473289.2006.10464485
  22. Rural Development Administration (RDA) 2021, Information on crop disaster prevention management technology 4:17-61.
  23. Ryu J.H., Y.Y. Oh, S.H. Lee, K.D. Lee, and Y.J. Kim 2020, Annual changes of soil salinity of the Saemangeum reclaimed tide land during last 10 years. Korean J Environ Agric 39:327-333. (in Korean) doi:10.5338/KJEA.2020.39.4.39
  24. Samet J.M., F. Dominici, F.C Curriero, I. Coursac, and S.L. Zeger 2000, Fine particulate air pollution and mortality in 20 U.S. Cities, 1987-1994. N Engl J Med 343:1742-1749 doi:10.1056/NEJM200012143432401
  25. Seo I.H., I.B. Lee, M.H. Shin, G.Y. Lee, H.S. Hwang, S.W. Hong, J.P. Bitog, J.I. Yoo, K.S. Kwon, Y.H. Kim, and T. Bartzanas 2010a, Numerical prediction of fugitive dust dispersion on reclaimed land in Korea. Trans ASABE 53:891-901. doi:10.13031/2013.30072
  26. Seo S., E.S. Chung, K.Y. Kim, G.J. Choi, J.N. Ahn, J.S. Han, H.K. Park, and Y.S. Kim 2010b, Comparison of forage productivity and quality of Italian ryegrass and barley mono, and mixtures sown in early spring. J Kor Grassl Forage Sci 30:115-120. (in Korean) doi: 10.5333/KGFS.2010.30.2.115
  27. Seo I.H., I.B. Lee, S.W. Hong, and H.S. Hwang 2007, Development of a CFD model to predict dust dispersion from Saemangeum reclaimed land. J Korean Soc Agric Eng 49:545-550. (in Korean)
  28. Shuai J., Z. Zhang, X. Liu, Y. Chen, P. Wang, and P. Shi 2013, Increasing concentrations of aerosols offset the benefits of climate warming on rice yields during 1980-2008 in Jiangsu Province, China. Reg Environ Change 13:287-297 doi:10.1007/s10113-012-0332-3
  29. Sin M.H., and J.D. Choi 2015, Development of optimal management technique for non-point pollutants of fields in Saemangeum. J Korean Soc Agric Eng 57:30-38. (in Korean)
  30. Son J.G. 2006, Optimal management plan for high value added creation in the Saemangeum reclaimed farmland. KCID Journal 13:17-25. (in Korean)
  31. Son J.G., and J.Y. Cho 2009, Effect of organic material treatments on soil aggregate formation in reclaimed tidelands. Korean J Soil Sci Fert 42:201-206. (in Korean)
  32. Son J.G., J.K. Choi, and J.Y. Cho 2009, Chemical properties of soil in the proposed horticultural complexes of Saemangeum reclaimed tideland. J Korean Soc Agric Eng 51:67-73. (in Korean) doi:10.5389/KSAE.2009.51.4.067
  33. Song C.K., J.J. Kim, and D.W. Song 2007, The effects of windbreaks on reduction of suspended particles. Atmosphere 17:315-326. (in Korean)
  34. Song T.H., O.K. Han, S.K. Yun, T.L. Park, J.H. Seo, K.H. Kim, and K.H. Park 2009, Changes in quantity and quality of winter cereal crops for forage at different growing stages. J Kor Grassl Forage Sci 29:129-136. (in Korean) https://doi.org/10.5333/KGFS.2009.29.2.129
  35. U.S. Environmental Protection Agency (US EPA) 2019, Particulate matter (PM) basics, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics/. Accessed 22 June 2019
  36. Watson J.G., J.C. Chow, L. Chen, and X. Wang 2010, Measurement system evaluation for fugitive dust emissions detection and quantification. Prepared by Desert Research Institute, Reno, NV, USA.
  37. Wong C.M., N. Vichit-Vadakan, H. Kan, and Z. Qian 2008, Public health and air pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality. Environ Health Perspect 116:1195-1202. doi:10.1289/ehp.11257
  38. Yang C.H, S. Kim, J.H. Lee, N.H. Baek, T.K. Kim, W.Y. Choi, J.H. Jeong, S.B. Lee, and G.B. Lee 2012, Effects of nitrogen fertilization increment on forage crops cultivation in saemangum reclaimed land. Korean J Soil Sci Fert 45:235-240. (in Korean) doi:10.7745/KJSSF.2012.45.2.235