• Title/Summary/Keyword: Chance-constrained model

Search Result 20, Processing Time 0.02 seconds

Dynamic Economic Dispatch for Microgrid Based on the Chance-Constrained Programming

  • Huang, Daizheng;Xie, Lingling;Wu, Zhihui
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1064-1072
    • /
    • 2017
  • The power of controlled generators in microgrids randomly fluctuate because of the stochastic volatility of the outputs of photovoltaic systems and wind turbines as well as the load demands. To address and dispatch these stochastic factors for daily operations, a dynamic economic dispatch model with the goal of minimizing the generation cost is established via chance-constrained programming. A Monte Carlo simulation combined with particle swarm optimization algorithm is employed to optimize the model. The simulation results show that both the objective function and constraint condition have been tightened and that the operation costs have increased. A higher stability of the system corresponds to the higher operation costs of controlled generators. These operation costs also increase along with the confidence levels for the objective function and constraints.

A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control

  • Gong, Jinxia;Xie, Da;Jiang, Chuanwen;Zhang, Yanchi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.80-89
    • /
    • 2014
  • A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.

Budget Estimation Problem for Capacity Enhancement based on Various Performance Criteria (다중 평가지표에 기반한 도로용량 증대 소요예산 추정)

  • Kim, Ju-Young;Lee, Sang-Min;Cho, Chong-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.175-184
    • /
    • 2008
  • Uncertainties are unavoidable in engineering applications. In this paper we propose an alpha reliable multi-variable network design problem under demand uncertainty. In order to decide the optimal capacity enhancement, three performance measures based on 3E(Efficiency, Equity, and Environmental) are considered. The objective is to minimize the total budget required to satisfy alpha reliability constraint of total travel time, equity ratio, and total emission, while considering the route choice behavior of network users. The problem is formulated as the chance-constrained model for application of alpha confidence level and solved as a lexicographic optimization problem to consider the multi-variable. A simulation-based genetic algorithm procedure is developed to solve this complex network design problem(NDP). A simple numerical example ispresented to illustrate the features of the proposed NDP model.

SCHEDULING REPETITIVE PROJECTS WITH STOCHASTIC RESOURCE CONSTRAINTS

  • I-Tung Yang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.881-885
    • /
    • 2005
  • Scheduling repetitive projects under limitations on the amounts of available resources (labor and equipment) has been an active subject because of its practical relevance. Traditionally, the limitation is specified as a deterministic (fixed) number, such as 1000 labor-hours. The limitation, however, is often exposed to uncertainty and variability, especially when the project is lengthy. This paper presents a stochastic optimization model to treat the situations where the limitations of resources are expressed as probability functions in lieu of deterministic numbers. The proposed model transfers each deterministic resource constraint into a corresponding stochastic one and then solves the problem by the use of a chance-constrained programming technique. The solution is validated by comparison with simulation results to show that it can satisfy the resource constraints with a probability beyond the desired confidence level.

  • PDF

A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA (Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구)

  • Bae, H.G.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

Valuation of Irrigation Water: A Chance-Constrained Programming Approach (확률제약 계획모형법을 이용한 농업용수의 경제적 가치 평가)

  • Kwon, Oh-Sang;Lee, Tae-Ho;Heo, Jeong-Hoi
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.281-295
    • /
    • 2009
  • This study estimates the value of irrigation water in Korea using an economic programming model that is constructed with all the resource endowment constraints, technology restrictions and policy variables. The variability and uncertainty of water resource endowment are incorporated into the model through the chance-constrained technique. Solving the profit maximization problems with gradually reduced water endowments, we derive a series of shadow values of irrigation water. It has been found that uncertainty in water supply raises the damage from water loss, and the marginal damage increases in water loss.

A New Chance-Constrained Programming Approach to Capital Budgeting (확률제약조건계획법(確率制約條件計劃法)을 이용(利用)한 자본예산모형(資本豫算模型))

  • Lee, Ju-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.6 no.2
    • /
    • pp.21-29
    • /
    • 1980
  • This paper deals with the capital budgeting problem of a firm where investments are risky and interrelated. The established models might be classified into two categories; One is the chance-constrained programming model and the other is the expected utility maximization model. The former has a rather limited objective function and does not consider the risk in direct manner. The latter, on the other hand, might lead to a wrong decision because it uses an approximate value of expected utility. This paper attempts to extend the applicability of the chance-constrained programming model by modifying its objective function into a more general form. The capital budgeting problem is formulated as a nonlinear 0-1 integer programming problem first, and is formulated into a linear 0-1 integer programming problem for finding a lower-bound solution of the original problem. The optimal solution of the original problem is then obtained by branch & bound algorithm.

  • PDF

Proactive Longitudinal Motion Planning for Improving Safety of Automated Bus using Chance-constrained MPC with V2V Communication (자율주행 버스의 주행 안전을 위한 차량 간 통신 및 모델 예측 제어 기반 종 방향 거동 계획)

  • Ara Jo;Michael Jinsoo Yoo;Jisub Kwak;Woojin Kwon;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2023
  • This paper presents a proactive longitudinal motion planning algorithm for improving the safety of an automated bus. Since the field of view (FOV) of the autonomous vehicle was limited depending on onboard sensors' performance and surrounding environments, it was necessary to implement vehicle-to-vehicle (V2V) communication for overcoming the limitation. After a virtual V2V-equipped target was constructed considering information obtained from V2V communication, the reference motion of the ego vehicle was determined by considering the state of both the V2V-equipped target and the sensor-detected target. Model predictive control (MPC) was implemented to calculate the optimal motion considering the reference motion and the chance constraint, which was deduced from manual driving data. The improvement in driving safety was confirmed through vehicle tests along actual urban roads.

A Multi-period Behavioral Model for Portfolio Selection Problem

  • Pederzoli, G.;Srinivasan, R.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.6 no.2
    • /
    • pp.35-49
    • /
    • 1981
  • This paper is concerned with developing a Multi-period Behavioral Model for the portfolio selection problem. The unique feature of the model is that it treats a number of factors and decision variables considered germane in decision making on an interrelated basis. The formulated problem has the structure of a Chance Constrained programming Model. Then empoloying arguments of Central Limit Theorem and normality assumption the stochastic model is reduced to that of a Non-Linear Programming Model. Finally, a number of interesting properties for the reduced model are established.

  • PDF

A Study of the Reformulation of 0-1 Goal Programming (0 - 1 목표계획모형의 재구조화에 관한 연구-기회제약계획법(CCP)과 계층화 분석과정(AHP)의 결합 가능성을 중심으로-)

  • 이영찬;민재형
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.525-529
    • /
    • 1996
  • Decision environments involve a high degree of uncertainty as well as multiple, conflicting goals. Although traditional goal programming offers a means of considering multiple, conflicting goals and arrives at a satisficing solution in a deterministic manner, its major drawback is that decision makers often specify aspiration level of each goal as a single number. To overcome the problem of setting aspiration levels, chance constrained programming can be incorporated into goal programming formulation so that sampling information can be utilized to describe uncertainty distribution. Another drawback of goal programming is that it does not provide a systematic approach to set priorities and trade-offs among conflicting goals. To overcome this weekness, the analytic hierarchy process(AHP) is used in the model. Also, most goal programming models in the literature are of a linear form, although some nonlinear models have been presented. Consideration of risk in technological coefficients and right hand sides, however, leads to nonlinear goal programming models, which require a linear approximation to be solved. In this paper, chance constrained reformulation with linear approximation is presented for a 0-1 goal programming problem whose technological coefficients and right hand sides are stochastic. The model is presented with a numerical example for the purpose of demonstration.

  • PDF