Browse > Article
http://dx.doi.org/10.3741/JKWRA.2009.42.4.281

Valuation of Irrigation Water: A Chance-Constrained Programming Approach  

Kwon, Oh-Sang (Dept. of Ag. Economics & Rural Development, Seoul National Univ.)
Lee, Tae-Ho (Dept. of Ag. Economics & Rural Development, Seoul National Univ.)
Heo, Jeong-Hoi (Korea Rural Economic Institute)
Publication Information
Journal of Korea Water Resources Association / v.42, no.4, 2009 , pp. 281-295 More about this Journal
Abstract
This study estimates the value of irrigation water in Korea using an economic programming model that is constructed with all the resource endowment constraints, technology restrictions and policy variables. The variability and uncertainty of water resource endowment are incorporated into the model through the chance-constrained technique. Solving the profit maximization problems with gradually reduced water endowments, we derive a series of shadow values of irrigation water. It has been found that uncertainty in water supply raises the damage from water loss, and the marginal damage increases in water loss.
Keywords
Irrigation Water; Economic Value; Chance-Constrained Model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maruyama, Y. (1972), 'The truncated maximum approach to farm planning under uncertainty with discrete probability distributions.' American journal of agricultural economics, Vol 54, pp. 192-200   DOI   ScienceOn
2 Yaron, D. (1967). 'Empirical analysis of the demand for water by Israeli agriculture.' Journal of farm economics, Vol 49, No. 2, pp. 461-473   DOI   ScienceOn
3 Young, R.A. (2005), Determining the economic value of water: concepts and methods. Resources for the Future, Washington D.C.
4 Bash, P.K., and Young, R.A. (1993). The role of the South Platte Tributary Aquifer in northeastern Colorado irrigated agriculture: results of a survey. Colorado Water Resources Research Institute, Fort Collins, Colorado
5 Hazell, P.B.R. (1971). 'A linear alternative to quadratic and semivariance programming for farm planning under uncertainty.' American journal of agricultural economics, Vol. 53, pp. 53-62   DOI   ScienceOn
6 Kibzun, A.I., and Kurbakovskiy, V.Y. (1991). 'Guaranteeing approach to solving quantile optimization problems.' Annals of operations research, Vol 30, pp. 81-94   DOI
7 Torell, A, Libbin, J., and Miller, M. (1990). 'The market value of water in the Ogallala Aquifer.' Land economics, Vol 66, No. 2, pp. 163-175   DOI   ScienceOn
8 김용택, 김홍상 (1999). '농업용수이용료의 부과기준 설정과 공급원가 분석.' 농촌경제, 한국농촌경제연구원, 제22권, 제4호, pp. 1-20
9 권오상 (2008a). '농지가격의 결정요인: 다단계 특성가격모형.' 농업경제연구, 한국농업경제학회, 제49권, 제1호, pp. 113-139
10 권오상 (2008b). '농지가격의 지역별.농지유형별 변동형태 분석.' 농업경제연구, 한국농업경제학회, 제49권, 제3호, pp. 53-76
11 김원희, 권오상, 안동환 (2003). '농업용수의 잠재가격분석.' 농업경제연구, 한국농업경제학회, 제44권, 제2호, pp. 153-174
12 임재환 (1989). 미곡생산에 있어 최적자원배분에 관한 연구: 물과 비료를 중심으로, 박사학위논문, 서울대학교
13 Ayer, H.W., Prentzel, J., and Hoyt, P. (1983). 'Estimation of substitution possibilities between water and other production inputs.' American journal of agricultural economics, Vol. 64, No. 1, pp. 149-151
14 최지현 (1982). 농지개량조합비 결정에 관한 연구, 석사학위논문, 서울대학교
15 Anderson, J.R., Dillon, J.L., and Hardaker, B. (1977). Agricultural decision analysis. Iowa State University Press, Ames, Iowa
16 Anderson, R.L. (1961). 'The irrigation water rental market: a case study,' Agricultural economics research. Vol 8, pp. 54-58
17 Charnes, A., and Copper, W.W. (1959). 'Chance constrained programming.' Management science. Vol. 6, No. 1, pp. 73-39   DOI   ScienceOn
18 Crouter, J. (1987). 'Hedonic estimation applied to a water rights market.' Land economics, Vol. 63, No. 3, pp. 259-269   DOI   ScienceOn
19 Faux, J., and Perry, G.M. (1999). 'Estimating irrigation water value using hedonic price analysis: a case study in Malheur County, Oregon.' Land economics, Vol. 75, pp. 440-452   DOI   ScienceOn
20 Gouevsky, I. and Maidment, D.R. (1984). 'Agricultural water demands,' in J. Kindler and C. S. Russell eds., Modeling water demands, Academic Press, Orlando, Florida, pp. 101-148
21 Gibbons, D.C. (1986). The economic value of water. Resources for the Future, Washington D.C.
22 Hatchett, S.A., Horner, G.L. and Howitt R.E., (1991). 'A regional mathematical programming model to assess drainage control policies,' in A. Dinar and D. Zilberman, eds., The economics and management of water and drainage in agriculture, Kluwer Academic Publishers, Boston, Massachusetts, pp. 465-488
23 Kelso. M.W., Martin, W.E., and Mack, L.E. (1973). Water supplies and economic growth in an arid environment: an Arizona case study. University of Arizona Press, Tucson, Arizona
24 Kibzun, A.I., and Kan, Y.S. (1996). Stochastic programming problems with probability and quantile functions. Wiley, New York, N.Y.
25 Madansky, A. (1962). 'Methods of solution of linear programs under uncertainty.' Operations research, Vol. 10, No. 4, pp. 197-204   DOI   ScienceOn
26 Hazell, P.B.R., and Norton, R.D. (1986). Mathematical programming for economic analysis in agriculture, MacMillan Publishing Company, New York, N.Y.
27 Hazell, P.B.R., Norton, R.D., Parthasarathy, M., and Pomareda, C. (1983). 'The imporatance of risk in agricultural planning models.' in R. D. Norton and L. Solís, eds., The book of CHAC: programming studies for Mexican agriculture, The Johns Hopkins University Press, Baltimore, Maryland, pp. 225-249
28 Hexem, R.W., and Heady, E.O. (1978). Water production functions for irrigated agriculture. Iowa State University Press, Ames, Iowa