• Title/Summary/Keyword: Chamber light

Search Result 357, Processing Time 0.024 seconds

A Study on the Thermal and Optical Properties of a LED Chamber Light for Vessels (선박용 LED Chamber Light의 열 및 광학 특성에 관한 연구)

  • Kim, Sang-Hyun;Lee, Do-Yup;Kim, Woo-Sung;Jang, Nakwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, LED is widely used in the kinds of display devices or lighting. In this paper, we fabricated LED chamber light for naval vessels to replace to conventional chamber light using incandescent lamp. The LED package of chamber light was designed with luminous intensity of 5.5 cd, color temperature of $6,000{\pm}500K$, forward voltage of 3~3.2 V and input current of 60 mA. A LED module was composed of 36 LED packages and metal PCB. The VF and luminous intensity of LED package were getting down when temperature increased. The temperature of LED chamber light was measured by changing the number of LED package and applied current for one hour when an electric current flow. The heat transfer capability have been improved by using metal PCB. The power consumption of LED chamber light reduced by 86% compared to the conventional chamber light using incandescent lamp.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro (LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Yong-Beom;Chang, Yu-Seob;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.

Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul (광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향)

  • Bae, Gwi-Nam;Park, Ju-Yeon;Kim, Min Cheol;Lee, Seung-Bok;Moon, Kil-Choo;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Study of Sound Transmission Characteristics of using a Scale Reverberation Chamber and vibro acoustic FEM (투과손실 예측을 위한 유한요소 해석과 소형 잔향실 실험의 비교에 검증에 관한 연구)

  • Lee, Jun-Heon;Kim, Bum-Soo;Kim, Kwan-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.92-95
    • /
    • 2011
  • The walls of modern train cars are required to have higher transmission loss since modern train have had high speed and light weight. The method based on Reverberation Chamber like KS F 2808 could be used to measure transmission loss. However, this method has difficulty in that constrained Standard of it requires extremely large facilities. Recently, the method based on Scale Reverberation Chamber is used as an alternative to Reverberation Chamber. The method of Scale Reverberation Chamber is known to be small and economical but it provides standing wave that directly influences measurement error. Therefore, this research is focus on predicting standing waves based on method of FFM and reducing measurement error by changing shape of chamber.

  • PDF

Controlling Tyrophagus putrescentiae Adults in LED-Equipped Y-Maze Chamber (LED-Equipped Y-Maze Chamber에 대한 긴털가루응애 성충의 방제효과)

  • Lee, Sang-Min;Lee, Jeong-Bin;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.101-104
    • /
    • 2015
  • To evaluate four different light-emitting diodes (LEDs) as potential attractants for Tyrophagus putrescentiae adults, attractiveness of blue (470 nm), green (520 nm), yellow (590 nm), and red (625 nm) LEDs were investigated at 20, 40, and 60 lx luminance intensity in LED-equipped Y-maze chamber and compared with the response to black light bulb (BLB), which is used in commercial traps. The BLB, the blue LED, the green LED, the yellow LED, and the red LED did not show the attractive to T. putrescentiae adults. These results suggested that four LEDs tested could not be used for environment-friendly control of T. putrescentiae adults.

Comparison of Temperature and Light Intensity Effects on the Photooxidation of Toluene-NOx-Air Mixture (온도와 광도가 톨루엔-NOx-공기 혼합물의 광산화 반응에 미치는 영향의 비교)

  • Ju, Ok-Jung;Bae, Gwi-Nam;Choi, Ji-Eun;Lee, Seung-Bok;Ghim, Young-Sung;Moon, Kil-Choo;Yoon, Soon-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.353-363
    • /
    • 2007
  • To differentiate temperature effect from the light intensity effect on the formation of secondary products during the photooxidation of toluene-$NO_x$-air mixtures, steady-state air temperature was changed from $20^{\circ}C\;to\;33^{\circ}C$ at the same light intensity of $0.39min^{-1}$ in an indoor smog chamber. Smog chamber consisted of 64 blacklights and a $5.8m^3$ reaction bag made of Teflon film. Air temperature was controlled by an air-conditioning system. The starting time for rapid conversion of NO to $NO_2$ was slightly delayed with decreasing air temperature. In contrast to light intensity effect, the ozone formation time and the ozone production rate were insensitive to air temperature. Although the formation time for secondary organic aerosols was not changed, the particle number concentration increased with temperature. However, the newly formed secondary organic aerosol mass at lower temperature was higher than that at higher temperature. Since light intensity significantly affected the starting time and quantity of ozone and aerosol formation, it is considered that the temperature could contribute partly the quantity of aerosol formation during the photooxidation of toluene-$NO_x$-air mixtures.