DOI QR코드

DOI QR Code

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations

UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구

  • Moon, Jiyeon (Energy Nano Materials Research Center, Korea Electronics Technology Institute) ;
  • Lee, Kyusang (Energy Nano Materials Research Center, Korea Electronics Technology Institute) ;
  • Kim, Seonmin (Energy Nano Materials Research Center, Korea Electronics Technology Institute)
  • 문지연 (전자부품연구원 에너지나노소재연구센터) ;
  • 이규상 (전자부품연구원 에너지나노소재연구센터) ;
  • 김선민 (전자부품연구원 에너지나노소재연구센터)
  • Received : 2015.02.17
  • Accepted : 2015.04.17
  • Published : 2015.12.01

Abstract

Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.

광촉매의 VOC 제거 특성 평가에 관한 최근의 연구는 온도 변화가 거의 없는 상태에서 실시되었다. 온도 변화를 적게하기 위해 광량이 높은 UVLED를 챔버 위부에 배치하게 되면 광촉매와의 거리가 멀어져 그만큼 효율이 감소할 수 밖에 없으며 광촉매의 효율 향상을 위해서는 광원과 광촉매의 거리를 가까이 해야 할 필요가 있다. 본 연구에서는 UVLED 광원과 광촉매와의 거리를 가까이 두어 온도가 변하는 VOC 제거 시스템을 제작하였다. 광촉매로는 자외선 광원에서 반응하는 상용 $TiO_2$와 vanadium 이온을 도핑시킨 $TiO_2$를 사용하였으며 제작된 챔버를 이용하여 광촉매 효율을 평가하였다. VOC 제거 평가 시 테스트 전후 온도는 약 $20^{\circ}C$ 상승하여 UVLED 광원에 의해 변화된 온도로 VOC의 농도를 보정하여 온도에 따른 VOC 제거 효율 변화를 확인하였다. 보정 전후의 제거 효율을 비교하면 43~46%의 차이를 보였다. 챔버 내 온도 상승이 p-xylene의 농도 변화에 큰 영향을 주며 이를 보정하여 광촉매의 VOC 제거 효율을 평가할 필요가 있음을 확인할 수 있었다.

Keywords

References

  1. Alberici, R. and Jardim, W., "Photocatalytic Destruction of VOCs in the Gas-phase Using Titanium Dioxide," Appl. Catal. B: Environ., 14, 55-68(1997). https://doi.org/10.1016/S0926-3373(97)00012-X
  2. Liu, Y., Quan, X., Zhao, Y., Chen, S. and Zhao, H., "Removal of Ternary VOCs in Air Streams at High Loads Using a Compost-based Biofilter," Biochem. Eng. J., 23, 85-95(2005). https://doi.org/10.1016/j.bej.2004.11.002
  3. Kim, H., Ogata, A. and Futamura, S., "Complete Oxidation of Volatile Organic Compounds (VOCs) Using Plasma-driven Catalysis and Oxygen Plasma," International Journal of Plasma Environmental Science & Technology, 1(1), 46-51(2007).
  4. Everaert, K. and Baeyens, J., "Catalytic Combustion of Volatile Organic Compounds," J. Hazard. Mater. B, 109, 113-139(2004). https://doi.org/10.1016/j.jhazmat.2004.03.019
  5. Das, D., Gaur, V. and Verma, N., "Removal of Volatile Organic Compound by Activated Carbon Fiber," Carbon, 42, 2949-2962(2004). https://doi.org/10.1016/j.carbon.2004.07.008
  6. Kumar, T., Rahul, Kumar, M. and Chandrajit, B., "Biofiltration of Volatile Organic Compounds (VOCs) - An Overview," Research Journal of Chemical Sciences, 1(8), 83-92(2011).
  7. Marira, A., Yeung, K., Lee, C., Yue, P. and Chan, C., "Size Effects in Gas-phase Photo-oxidation of Trichloroethylene Using Nanometer-sized $TiO_2$ Catalysts," J. Catal., 192, 185-196(2000). https://doi.org/10.1006/jcat.2000.2838
  8. Kasuga, T., Hiramatsu, M., Hirano, M., Hoson, A. and Oyamada, K., "Preparation of $TiO_2$-cased Powders with High Photocatalytic Activities," J. Matet. Res., 12(3), 607-609(1997). https://doi.org/10.1557/JMR.1997.0090
  9. Ha, H. Y. and Anderson, M. A., "Photodegradation of Organic Pollutants in Water Using Metal-supported $TiO_2$ Catalysts Prepared by Sol-gel Techniques," J. Korean Institute of Chem. Eng., 34(3), 356-362(1996).
  10. Rezaee, A., Pourtaghi, H., Khvanin, A., Mamoory, R., Ghaneian, M. and Godini, H., "Photocatalytic Decomposition of Haseous Toluene by $TiO_2$ Nanoparticles Coated on Activated Carbon," Iran. J. Environ. Health. Sci. Eng., 5, 305-310(2008).
  11. Kim, M. S., Kim, J. S. and Kim, B. W., "Removal of Gaseous Toluene by Using $TiO_2$ Film Doped of Ru-dye/Pt in a Pilot Scale Photoreactor," Korean J. Chem. Eng., 29(5), 549-554(2012). https://doi.org/10.1007/s11814-011-0222-2
  12. Jung, J., "Degradation of VOC by Photocatalysts and Dark Discharge Hybrid Systems," Korean Chem. Eng. Res., 46(5), 852-857 (2008).
  13. Zuo, G., Cheng, Z., Chen, H., Li, G. and Miao, T., "Study on Photocatalytic Degradation of Several Volatile Organic Compounds," J. Hazard. Mater. B, 128, 158-163(2006). https://doi.org/10.1016/j.jhazmat.2005.07.056
  14. Peng, M. and Cha, W., "Degradation of MEK Using Continuous Single Module Photo-catalytic Reactor," J. Korea Academia-Industrial Cooperation Society, 14(10), 5304-5309(2013). https://doi.org/10.5762/KAIS.2013.14.10.5304
  15. Augugliaro, V., Loddo, V., Pagliaro, M., Palmisano, G. and Palmisano, L., "Clean by light irradiation: Practical applications of supported $TiO_2$," Royal Society of Chemistry, 246-247(2010).
  16. Hsiang, H. and Lin, S., "Effects of Aging on Nanocrystallinea-natase-to-rutile Phase Transformation Kinetics," Ceram. Int., 34, 557-561(2008). https://doi.org/10.1016/j.ceramint.2006.12.004
  17. Nainani, R., Thakur, P. and Chaskar, M., "Synthesis of Silver Doped $TiO_2$ Nanoparticles for the Improved Photocatalytic Degradation of Methyl Orange," J. Mater. Sci. Eng. B, 2(1), 52-58(2012).
  18. Sakthivel, S. and Kisch, H., "Daylight Photocatalysis by Carbon-modified Titanium Oxide," Angew. Chem. Int. Ed., 42, 4908-4911 (2003). https://doi.org/10.1002/anie.200351577
  19. Brusturean, G., Carré, J., Perju, D. and Todinca, T., "Study of the Influence of Temperature the Venting Depollution Process of Soils Contaminated with Volatile Organic Compounds," J. Serb. Chem. Soc., 71(12), 1353-1361(2006). https://doi.org/10.2298/JSC0612353B
  20. Mital, G. and Manoj, T., "A Review of $TiO_2$ Nanoparticles," Physical Chemistry, 56(16), 1639-1657(2011).