• Title/Summary/Keyword: Cesium adsorbent

Search Result 25, Processing Time 0.021 seconds

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent

  • Wu, Hao;Kudo, Tatsuya;Kim, Seong-Yun;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1597-1605
    • /
    • 2022
  • A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Immobilization of Prussian blue nanoparticles in acrylic acid-surface functionalized poly(vinyl alcohol) sponges for cesium adsorption

  • Wi, Hyobin;Kang, Sung-Won;Hwang, Yuhoon
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.173-179
    • /
    • 2019
  • Prussian blue (PB) is known to be an effective material for radioactive cesium adsorption, but its nano-range size make it difficult to be applied for contaminated water remediation. In this study, a simple and versatile approach to immobilize PB in the supporting matrix via surface functionalization was investigated. The commercially available poly vinyl alcohol (PVA) sponge was functionalized by acrylic acid (AA) to change its major functional group from hydroxyl to carboxylic, which provides a stronger ionic bond with PB. The amount of AA added was optimized by evaluating the weight change rate and iron(III) ion adsorption test. The FTIR results revealed the surface functional group changing to a carboxyl group. The surface functionalization enhanced the attachment of PB, which minimized the leaching out of PB. The $Cs^+$ adsorption capacity significantly increased due to surface functionalization from 1.762 to 5.675 mg/g. These findings showed the excellent potential of the PB-PAA-PVA sponge as a cesium adsorbent as well as a versatile approach for various supporting materials containing the hydroxyl functional group.

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

Enhanced Removal Efficiency of Low-Concentration Cesium Ion in Water Phase by Using Petroleum Residue Pitch (석유계 잔사유 피치를 이용한 수중에서 저농도 세슘 이온의 제거효율 향상)

  • Choi, Tae Ryeong;Ha, Jeong Hyub;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • In this research, in order to effectively utilize the petroleum residue pitch, it was used as an adsorbent for removal of cesium ion. In this experiment, acid modification (hydrochloric acid, sulfuric acid) treatment was performed on the adsorbent to improve the ability to remove low-concentration cesium ions dissolved in water. As a result, when the reaction was performed with 9 M sulfuric acid at 25 ℃ and for 240 min, the removal efficiencies of 1.0 and 2.5 mg/L cesium ions were 66 and 51%, respectively. In addition, as the adsorption time increased in the batch experiment, the removal capacity of 1.0 and 2.5 mg/L cesium ions was improved, and when the adsorption reached for 32 hr, the removal efficiencies were 72 and 68%, respectively. Also, in order to increase the ability to remove the remaining cesium ions, an experiment was performed by temperature change (25, 37, 49 ℃), and 1.0 and 2.5 mg/L cesium ions contained in water under the operating conditions of 49 ℃ and 32 hr showed removal efficiencies of 90 and 81%, respectively. Consequently, these experimental results were intended to be used as an adsorption technology that can economically treat low-concentration cesium ions contained in water.

Sorption Analysis of Carbon Dioxide onto Cesium Carbonate (세슘카보네이트에서 이산화탄소의 수착반응)

  • Son, Young-Sik;Kim, Seong-Soo;park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.373-379
    • /
    • 2009
  • Cesium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of $CO_2$. The deactivation model in the non-catalytic heterogeneous reaction systems is used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture using the experimental breakthrough data. The experimental breakthrough data are fitted very well to the deactivation model than the adsorption isotherm models in the literature.

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater (고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구)

  • Kim, Jimin;Lee, Keun-Young;Kim, Kwang-Wook;Lee, Eil-Hee;Chung, Dong-Yong;Moon, Jei-Kwon;Hyun, Jae-Hyuk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group (작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.97-108
    • /
    • 2021
  • In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.