Browse > Article
http://dx.doi.org/10.1016/j.net.2019.08.001

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes  

Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University)
Zhuang, Shuting (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University)
Publication Information
Nuclear Engineering and Technology / v.52, no.2, 2020 , pp. 328-336 More about this Journal
Abstract
Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.
Keywords
Cesium; Separation; Adsorbent; Extractant; Crown ethers; Coordinating polymers;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W.W. Schulz, L.A. Bray, Solvent extraction recovery of byproduct $^{137}Cs$ and $^{90}Sr$ from $HNO_3$ solutions-a technology review and assessment, Separ. Sci. Technol. 22 (1987) 191-214.   DOI
2 B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction: 2. A review of fission-product extraction, Solvent Extr. Ion Exch. 27 (2009) 331-353.   DOI
3 N.A. Bezhin, I.I. Dovhyi, Sorbents based on crown ethers: preparation and application for the sorption of strontium, Russ. Chem. Rev. 84 (2015) 1279-1293.   DOI
4 M.R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. Okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard Mater. 278 (2014) 227-235.   DOI
5 I.V. Kolesnichenko, E.V. Anslyn, Practical applications of supramolecular chemistry, Chem. Soc. Rev. 46 (2017) 2385-2390.
6 T.A. Hanna, L. Liu, A.M. Angeles-Boza, X. Kou, C.D. Gutsche, K. Ejsmont, W.H. Watson, L.N. Zakharov, C.D. Incarvito, A.L. Rheingold, Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions, J. Am. Chem. Soc. 125 (2003) 6228-6238.   DOI
7 T.G. Levitskaia, L. Maya, G.J. Van Berkel, B.A. Moyer, Anion partitioning and ion-pairing behavior of anions in the extraction of cesium salts by 4,5' '-Bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-dichloroethane, Inorg. Chem. 46 (2007) 261-272.   DOI
8 C. Xu, J.C. Wang, J. Chen, Solvent extraction of strontium and cesium: a review of recent progress, Solvent Extr. Ion Exch. 30 (2012) 623-650.   DOI
9 P. Jagasia, P.K. Mohapatra, P.S. Dhami, P.M. Gandhi, P.K. Wattal, Evaluation of novel solvent systems containing calix-crown-6 ligands in a fluorinated solvent for cesium extraction from nitric acidic feeds, Separ. Sci. Technol. 49 (2014) 2151-2157.   DOI
10 A. Jo, G. Jang, H. Namgung, C. Kim, D. Kim, Y. Kim, J. Kim, T.S. Lee, Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates, J. Hazard Mater. 300 (2015) 227-234.   DOI
11 J.Y. Kim, H.J. Kim, N.H. Heo, K. Seff, Progress toward zeolite-based self-luminous sensors for radioactive isotopes such as $^{201}Tl$ and $^{137}Cs$: structures and luminescence of Hf, Cl, Tl-A and Hf, Cl, Cs, Na-A, J. Phys. Chem. C 121 (2017) 19619-19633.   DOI
12 N. Ding, M.G. Kanatzidis, Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide, Nat. Chem. 2 (2010) 187-191.   DOI
13 S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of $Cs^+$ from aqueous solution, Separ. Purif. Technol. 175 (2017) 255-265.   DOI
14 Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, D. Juan, J. Su, Z. Chai, T.E. Albrecht-Schmitt, S. Wang, Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions, J. Am. Chem. Soc. 137 (2015) 6144-6147.   DOI
15 J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metalorganic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev. 47 (2018) 2322-2356.
16 C. Xiao, M.A. Silver, S. Wang, Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook, Dalton Trans. 46 (2017) 16381-16386.   DOI
17 S.K. Kim, J.L. Sessler, Calix[4]pyrrole-based ion pair receptors, Acc. Chem. Res. 47 (2014) 2525-2536.   DOI
18 P. Jagasia, P.S. Dhami, P.K. Mohapatra, S.A. Ansari, S.Y. Jadhav, G.K. Kalyankar, P.M. Gandhi, U.K. Kharul, Recovery of radio-cesium from actual high level liquid waste using solvents containing calix[4]arene-crown-6 ligands, J. Environ. Chem. Eng. 5 (2017) 4134-4140.   DOI
19 D.R. Raut, P.K. Mohapatra, S.A. Ansari, A. Sarkar, V.K. Manchanda, Selective transport of radio-cesium by supported liquid membranes containing calix[4] crown-6 ligands as the mobile carrier, Desalination 232 (2008) 262-271.   DOI
20 T.A. Todd, T.A. Batcheller, J.D. Law, R.S. Herbst, Cesium and Strontium Separation Technologies Literature Review, Idaho Falls, Idaho, 2004.
21 S.K. Kim, H.G. Lee, G.I. Vargas-Zuniga, V.M. Lynch, C. Kim, J.L. Sessler, Naphthocrown-strapped calix[4]pyrroles: formation of self-assembled structures by ion-pair recognition, Chemistry 20 (2014) 11750-11759.
22 X. Chi, G.M. Peters, C. Brockman, V.M. Lynch, J.L. Sessler, Controlling structure beyond the initial coordination sphere: complexation-induced reversed micelle formation in calix[4]pyrrole-containing diblock copolymers, J. Am. Chem. Soc. 140 (2018) 13219-13222.   DOI
23 Z. Zhang, A. Drapailo, Y. Matvieiev, L. Wojtas, M.J. Zaworotko, A calixarene based metal organic material, calixMOM, that binds potassium cations, Chem. Commun. 49 (2013) 8353-8355.   DOI
24 J. Yoo, M.S. Kim, S.J. Hong, J.L. Sessler, C.H. Lee, Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines, J. Org. Chem. 74 (2009) 1065-1069.   DOI
25 Q. He, G.M. Peters, V.M. Lynch, J.L. Sessler, Recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor, Angew. Chem., Int. Ed. Engl. 56 (2017) 13396-13400.
26 C. Liu, D.X. Zhang, L.T. Zhao, P. Zhang, X. Lu, S.N. He, Extraction property of ptert-butylsulfonylcalix 4 arene possessing irradiation stability towards cesium(I) and strontium(II), Appl. Sci. 6 (2016) 212-219.   DOI
27 P.K. Mohapatra, S.A. Ansari, A. Sarkar, A. Bhattacharyya, V.K. Manchanda, Evaluation of calix-crown ionophores for selective separation of radio-cesium from acidic nuclear waste solution, Anal. Chim. Acta 571 (2006) 308-314.   DOI
28 Y. Dai, R. Lv, Z. Liu, Q. Tao, Z. Zhang, Y. Liu, Extraction behavior of cesium from nitric acid medium with calix[4]-bis[(4-tert-butyl-1,2-phenylene)-crown-6], J. Radioanal. Nucl. Chem. 318 (2018) 2079.
29 M. Simonnet, Y. Miyazaki, S. Suzuki, T. Yaita, Quantitative analysis of Cs extraction by some dialkoxycalix[4]arene-crown-6 extractants, Solvent Extr. Ion Exch. 37 (2019) 81-95.   DOI
30 W.J. McDowell, G.N. Case, J.A. McDonough, R.A. Bartsch, Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis(tert-butylbenzo)-21-crown-7, Anal. Chem. 64 (2002) 3013-3017.   DOI
31 R. Yi, New Magnetic Composites for Adsorption toward Stronitum and Cesium: Synthesis and Adsorption Behavior Study, Tsinghua University, 2016, p. 128.
32 M.L. Dietz, E. Philip Horwitz, M.P. Jensen, S. Rhoads, R.A. Bartsch, A. Palka, J. Krzykawski, J. Nam, Substituent effects in the extraction of cesium from acidic nitrate media with macrocyclic polyethers, Solvent Extr. Ion Exch. 14 (2007) 357-384.   DOI
33 A. Zhang, Q. Hu, Removal of cesium by countercurrent solvent extraction with a calix[4]crown derivative, Separ. Sci. Technol. 52 (2017) 1670-1679.
34 A. Casnati, A. Pochini, R. Ungaro, F. Ugozzoli, F. Arnaud, S. Fanni, M.-J. Schwing, R.J.M. Egberink, F. de Jong, D.N. Reinhoudt, Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores, J. Am. Chem. Soc. 117 (1995) 2767-2777.   DOI
35 M. Kvicalova, E. Makrlík, S. Bohm, P. Vanura, Z. Asfari, Protonation of calix[4] arene-(2,3-naphthylene-crown-6,crown-6): experimental and theoretical study, J. Mol. Struct. 1134 (2017) 722-727.   DOI
36 J.L. Wang, S.T. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374 (2018) 430-438.   DOI
37 J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18 (2019) 231-269.
38 F. Jia, J.F. Li, J.L. Wang, Y.L. Sun, Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system, Nucl. Technol. 197 (2017) 219-224.   DOI
39 H.Y. Liu, J.L. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard Mater. 261 (2013) 307-315.   DOI
40 Y.M. Hu, X. Guo, C. Chen, J.L. Wang, Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer, Appl. Microbiol. Biotechnol. 103 (2019) 2833-2843.   DOI
41 T. Takahashi, T. Ito, S.Y. Kim, Selective extraction of Cs(I) using 1,3-[(2,4- diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene in ionic liquid solvents and its application to the treatment of high-level liquid waste, J. Radioanal. Nucl. Chem. 316 (2018) 1067-1073.   DOI
42 J.L. Sessle, S.K. Kim, D.E. Gross, C.-H. Lee, J.S. Kim, V.M. Lynch, Crown-6-calix[4] arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions, J. Am. Chem. Soc. 130 (2008) 13162-13166.   DOI
43 L.J. Xu, J.L. Wang, The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1042-1105.
44 J.L. Wang, S.Z. Wang, Preparation, modification and environmental application of biochar: a review, J. Clean. Prod. 227 (2019) 1002-1022.
45 Y.N. Yin, J. Hu, J.L. Wang, Removal of $Sr^{2+},\;Co^{2+},\;and\;Cs^+$ from aqueous solution by immobilized saccharomyces cerevisiae with magnetic chitosan beads, Environ. Prog. Sustain. Energy 36 (2017) 989-996.   DOI
46 J.L. Wang, S.T. Zhuang, Removal of various pollutants from water and wastewater by modified chitosan adsorbents, Crit. Rev. Environ. Sci. Technol. 47 (2017) 2331-2386.
47 Y.W. Chen, J.L. Wang, Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde, Nucl. Sci. Tech. 27 (2016) 1-6.
48 J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol. 160 (2014) 129-141.   DOI
49 J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226.   DOI
50 S.K. Kim, J.L. Sessler, D.E. Gross, C.H. Lee, J.S. Kim, V.M. Lynch, L.H. Delmau, B.P. Hay, A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes, J. Am. Chem. Soc. 132 (2010) 5827-5836.   DOI
51 T. Ito, Y. Xu, S.-Y. Kim, R. Nagaishi, T. Kimura, Adsorption behavior and radiation effects of a silica-based (Calix(4)+Dodecanol)/$SiO_2$-P adsorbent for selective separation of Cs(I) from high level liquid waste, Separ. Sci. Technol. 51 (2015) 22-31.
52 M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M. Amin, Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review, RSC Adv. 5 (2015) 71658-71683.   DOI
53 M.T. Albelda, J.C. Frias, E. Garcia-Espana, H.J. Schneider, Supramolecular complexation for environmental control, Chem. Soc. Rev. 41 (2012) 3859-3877.   DOI
54 A. Ovsyannikov, S. Solovieva, I. Antipin, S. Ferlay, Coordination polymers based on calixarene derivatives: structures and properties, Coord. Chem. Rev. 352 (2017) 151-186.   DOI
55 P.K. Parhi, Supported liquid membrane principle and its practices: a short review, J. Chem. 2013 (2013) 1-11.
56 T.P. Valsala, M.S. Sonavane, S.G. Kore, N.L. Sonar, V. De, Y. Raghavendra, S. Chattopadyaya, U. Dani, Y. Kulkarni, R.D. Changrani, Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products, J. Hazard Mater. 196 (2011) 22-28.   DOI
57 Y.-H. Koo, Y.-S. Yang, K.-W. Song, Radioactivity release from the Fukushima accident and its consequences: a review, Prog. Nucl. Energy 74 (2014) 61-70.   DOI
58 B.C. Russell, I.W. Croudace, P.E. Warwick, Determination of $^{135}Cs$ and $^{137}Cs$ in environmental samples: a review, Anal. Chim. Acta 890 (2015) 7-20.   DOI
59 J. Beyea, E. Lyman, F.N. von Hippel, Accounting for long-term doses in "worldwide health effects of the Fukushima Daiichi nuclear accident", Energy Environ. Sci. 6 (2013) 1042-1045.   DOI
60 J.E. Ten Hoeve, M.Z. Jacobson, Worldwide health effects of the Fukushima Daiichi nuclear accident, Energy Environ. Sci. 5 (2012) 8743-8757.   DOI
61 K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, M. Akiba, Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake, Water Res. 46 (2012) 4397-4404.   DOI
62 A. Zhang, W. Zhang, Y. Wang, X. Ding, Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography, Separ. Purif. Technol. 171 (2016) 17-25.   DOI
63 X.J. Liu, J.L. Wu, J.L. Wang, Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes, Chem. Eng. J. 344 (2018) 353-362.   DOI
64 F. Jia, J.L. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy 98 (2017) 293-300.   DOI
65 S.T. Zhuang, Y.N. Yin, J.L. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol. 50 (2018) 211-215.   DOI
66 J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451.   DOI
67 D. Cui, J. Low, K. Spahiu, Environmental behaviors of spent nuclear fuel and canister materials, Energy Environ. Sci. 4 (2011) 2537-2545.   DOI
68 R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767.
69 D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review, J. Hazard Mater. 344 (2018) 511-530.   DOI
70 J.C. Fanning, The solubilities of the alkali-metal salts and the precipitation of $Cs^+$ from aqueous-solution, Coord. Chem. Rev. 140 (1995) 27-36.   DOI
71 R.J. Ellis, B. Reinhart, N.J. Williams, B.A. Moyer, V.S. Bryantsev, Capping the calix: how toluene completes cesium(I) coordination with calix[4]pyrrole, Chem. Commun. 53 (2017) 5610-5613.   DOI
72 C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89 (1967) 7017-7036.   DOI
73 P.V. Bonnesen, L.H. Delmau, B.A. Moyer, G.J. Lumetta, Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste, Solvent Extr. Ion Exch. 21 (2003) 141-170.   DOI
74 J.F. Dozol, M. Dozol, R.M. Macias, Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes, J. Inclusion Phenom. Macrocycl. Chem. 38 (2000) 1-22.
75 A. Zhang, C. Chen, Y. Ji, S. Liu, S. Guo, Uptake of cesium and some typical metals onto hybrid calix[4]crown adsorbent with silica carrier by hosteguest recognition, J. Chem. Eng. Data 63 (2018) 1578-1587.   DOI
76 N. Kumar, I. Leray, A. Depauw, Chemically derived optical sensors for the detection of cesium ions, Coord. Chem. Rev. 310 (2016) 1-15.   DOI
77 M.R. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep. 6 (2016) 19937.   DOI
78 R. Yi, G. Ye, F. Wu, D. Lv, J. Chen, Magnetic solid-phase extraction of strontium using coreeshell structured magnetic microspheres impregnated with crown ether receptors: a response surface optimization, J. Radioanal. Nucl. Chem. 308 (2015) 599-608.
79 H.-R. Yu, J.-Q. Hu, Z. Liu, X.-J. Ju, R. Xie, W. Wang, L.-Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard Mater. 323 (2017) 632-640.   DOI
80 Z. Liu, Y. Zhou, M. Guo, B. Lv, Z. Wu, W. Zhou, Experimental and theoretical investigations of $Cs^+$ adsorption on crown ethers modified magnetic adsorbent, J. Hazard Mater. 371 (2019) 712-720.   DOI
81 A. Leoncini, J. Huskens, W. Verboom, Ligands for f-element extraction used in the nuclear fuel cycle, Chem. Soc. Rev. 46 (2017) 7229-7273.   DOI
82 P. Jagasia, S.A. Ansari, D.R. Raut, P.S. Dhami, P.M. Gandhi, A. Kumar, P.K. Mohapatra, Hollow fiber supported liquid membrane studies using a process compatible solvent containing calix[4]arene-mono-crown-6 for the recovery of radio-cesium from nuclear waste, Separ. Purif. Technol. 170 (2016) 208-216.   DOI