DOI QR코드

DOI QR Code

Enhanced Removal Efficiency of Low-Concentration Cesium Ion in Water Phase by Using Petroleum Residue Pitch

석유계 잔사유 피치를 이용한 수중에서 저농도 세슘 이온의 제거효율 향상

  • Choi, Tae Ryeong (Department of Environmental Safety System Engineering, Semyung University) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
  • 최태령 (세명대학교 환경안전시스템공학과) ;
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 최석순 (세명대학교 바이오환경공학과)
  • Received : 2021.11.01
  • Accepted : 2021.11.11
  • Published : 2021.12.30

Abstract

In this research, in order to effectively utilize the petroleum residue pitch, it was used as an adsorbent for removal of cesium ion. In this experiment, acid modification (hydrochloric acid, sulfuric acid) treatment was performed on the adsorbent to improve the ability to remove low-concentration cesium ions dissolved in water. As a result, when the reaction was performed with 9 M sulfuric acid at 25 ℃ and for 240 min, the removal efficiencies of 1.0 and 2.5 mg/L cesium ions were 66 and 51%, respectively. In addition, as the adsorption time increased in the batch experiment, the removal capacity of 1.0 and 2.5 mg/L cesium ions was improved, and when the adsorption reached for 32 hr, the removal efficiencies were 72 and 68%, respectively. Also, in order to increase the ability to remove the remaining cesium ions, an experiment was performed by temperature change (25, 37, 49 ℃), and 1.0 and 2.5 mg/L cesium ions contained in water under the operating conditions of 49 ℃ and 32 hr showed removal efficiencies of 90 and 81%, respectively. Consequently, these experimental results were intended to be used as an adsorption technology that can economically treat low-concentration cesium ions contained in water.

본 연구에서는 석유계 잔사유 피치를 효과적으로 활용하고자, 세슘 이온의 제거를 위한 흡착제로 사용하였다. 이 실험에서는 수중에 용해된 저농도 세슘 이온의 제거능력 향상을 위하여 흡착제에 산 개질(염산, 황산)처리가 수행되었다. 그 결과, 9 M 황산으로 개질된 흡착제가 25 ℃에서 240 min 반응이 이루어졌을 때, 1.0과 2.5 mg/L의 세슘 이온의 제거효율은 각각 66, 51%를 나타내었다. 또한, 회분식 공정에서 흡착 시간이 증가할수록 1.0과 2.5 mg/L의 세슘 이온 제거능력이 향상되었으며, 32 hr 흡착에 도달하였을 때 각각 72, 68%의 제거효율을 나타내었다. 그리고 잔존하는 세슘 이온의 제거 능력을 높이고자, 온도 변화(25, 37, 49 ℃)에 의한 실험이 이루어졌으며, 49 ℃와 32 hr의 운전 조건에서 수중에 함유된 1.0과 2.5 mg/L 세슘이온은 각각 90, 81%의 제거효율을 얻을 수 있었다. 따라서 이러한 실험 결과들은 수중에 함유된 저농도 세슘 이온을 경제적으로 처리할 수 있는 흡착 기술로 사용하고자 하였다.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 한국산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20012763).

References

  1. Kim, Y. K., Kim, Y. H., Kim, S. J., Harbottle, D. and Lee, J. W., "Solvent-assisted synthesis of potassium copper hexacyanoferrate embedded 3D-interconnected porous hydrogel for highly selective and rapid cesium ion removal", Journal of Environmental Chemical Engineering, 5, pp. 975~986. (2017). https://doi.org/10.1016/j.jece.2017.01.026
  2. Kim, H. C., Kim, M. S., Kim, W. Y., Lee, W. N. and Kim, S. H., "Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2", Journal of Hazardous Materials, 357, pp. 449~456. (2018). https://doi.org/10.1016/j.jhazmat.2018.06.037
  3. Rahayu, N. W. S. T., Park, J. Y., Yang, M. J., Wang, S. Y. and Lee, M. H., "Cesium removal from a water system using a polysulfone carrier containing nitric acid-treated bamboo charcoal", Journal of Environmental Radioactivity, 225, p. 106374. (2020). https://doi.org/10.1016/j.jenvrad.2020.106374
  4. Lalhmunsiama, Kim, J. G., Choi, S. S. and Lee, S. M., "Recent Advances in Adsorption Removal of Cesium from Aquatic Environment", Applied Chemistry for Engineering, 29(2), pp. 127~137. (2018). https://doi.org/10.14478/ACE.2018.1019
  5. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A. and Sugihara, Y., "Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system", Journal of Colloid and Interface Science, 571, pp. 66~79. (2020). https://doi.org/10.1016/j.jcis.2020.03.028
  6. Kamaraj, R. and Vasudevan, S., "Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution", Chemical Engineering Research and Design, 93, pp. 522~530. (2015). https://doi.org/10.1016/j.cherd.2014.03.021
  7. Ding, S., Yang, Y., Huang, H., Liu, H. and Hou, L., "Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium", Journal of Hazardous Materials, 294, pp. 27~34. (2015). https://doi.org/10.1016/j.jhazmat.2015.03.056
  8. Pavel, C. C. and Popa, K., "Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials", Chemical Engineering Journal, 245, pp. 288~294. (2014). https://doi.org/10.1016/j.cej.2014.02.036
  9. Khandaker, S., Kuba, T., Kamida, S. and Uchikawa, Y., "Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal", Journal of Environmental Chemical Engineering, 5, pp. 1456~1464. (2017). https://doi.org/10.1016/j.jece.2017.02.014
  10. Kurto glu, A. S., Gurda g, G. and Keceli, G., "Radioactive cesium ion removal from wastewater using polymer metal oxide composites", Journal of Hazardous Materials, 403, p. 123652. (2021). https://doi.org/10.1016/j.jhazmat.2020.123652
  11. Awual, M. R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y. and Yaita, T., "Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents", Chemical Engineering Journal, 242, pp. 127~135. (2014). https://doi.org/10.1016/j.cej.2013.12.072
  12. Kim, J. G., Kim, J. H., Im, J. S., Lee, Y. S. and Bae, T. S., "Empirical study of petroleum-based pitch production via pressure- and temperaturecontrolled thermal reactions", Journal of Industrial and Engineering Chemistry, 62, pp. 176~184. (2018). https://doi.org/10.1016/j.jiec.2017.12.055
  13. Ning, H., Guo, D., Wang, X., Tan, Z., Wang, W., Yang, Z., Li, L., Zhao, Q., Hao, J. and Wua, M., "Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch", Journal of Energy Chemistry, 56, pp. 113~120. (2021). https://doi.org/10.1016/j.jechem.2020.07.049
  14. Kim, J. Y., Im, U. S., Lee, B. U., Pack, D. H., Yoon, S. H. and Jung, D. H., "Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition", Carbon letters, 19, pp. 72~78. (2016). https://doi.org/10.5714/CL.2016.19.072
  15. Kim, J. H., Kim, J. G., Lee, C. W., Lee, K. B. and Im, J. S., "Effect of added mesophase pitch during the pitch synthesis reaction of PFO", Carbon letters, 23, pp. 48~54. (2017). https://doi.org/10.5714/CL.2017.23.048
  16. Lee, D. H., Choi, J. S., Oh, Y. S., Kim, Y. A., Yang, K. S., Ryu, H. J. and Kim, Y. J., "Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers", Carbon letters, 24, pp. 28~35. (2017). https://doi.org/10.5714/CL.2017.24.028
  17. Li, M., Liu, D., Men, Z., Lou, B., Yu, S., Ding, J. and Cui, W., "Effects of different extracted components from petroleum pitch on mesophase development", Fuel, 222, pp. 617~626. (2018). https://doi.org/10.1016/j.fuel.2018.03.011
  18. Kim, J. H., Choi, Y. J., Im, J. S., Jo, A., Lee, K. B. and Bai, B. C., "Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch", Journal of Industrial and Engineering Chemistry, 88, pp. 251~259. (2020). https://doi.org/10.1016/j.jiec.2020.04.022
  19. Kim, D. S., "Fabrication of petroleum pitch based porous hybrid carbon materials and their application for radionuclide adsorption/decontamination", Master's Thesis, Wonkwang University, pp. 1~8. (2020).
  20. Jeon, C., "Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferratesericite beads in the batch and continuous processes", Journal of Industrial and Engineering Chemistry, 40, pp. 93~98. (2016) https://doi.org/10.1016/j.jiec.2016.06.010
  21. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z. and Yang, Y., "Adsorption of cesium from aqueous solution using agricultural residue e Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies", Water Research, 47, pp. 2563~2571. (2013). https://doi.org/10.1016/j.watres.2013.02.014
  22. Ghosh, P. K., "Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons", Journal of Hazardous Materials, 171, pp. 116~122. (2009). https://doi.org/10.1016/j.jhazmat.2009.05.121