• 제목/요약/키워드: Cerebral Physiology

검색결과 264건 처리시간 0.09초

백서의 피부 및 뇌혈류에 미치는 고려홍삼 사포닌 및 비사포닌의 영향 (Effects of Crude Saponin and Saponin-free Fraction of Korea Red Ginseng on the Skin and Cerebral Blood Flow in the Rats)

  • 김신희;김국성;박진봉;한찬수;김광진;김신혜;김세훈;남기열;전병화
    • Journal of Ginseng Research
    • /
    • 제26권3호
    • /
    • pp.132-138
    • /
    • 2002
  • 본 연구에서는 혈류량의 변화를 실시간으로 측정할 수 있는 레이져 도플러 혈류량측정장치를 이용하여 피부혈류 및 뇌혈류량에 미치는 고려홍삼의 사포닌과 비사포닌의 효능을 연구하고자 고려홍삼의 정맥내 복강내 및 구강내로 주입하고 혈류의 변화를 관찰하여 다음과 같은 결론을 얻었다. 고려 홍삼의 사포닌 성분은 피부혈류량에는 영향을 주지 않으나 뇌혈류량을 증가시키는 효능이 있다. 고려 홍삼의 비사포닌 성분은 피부혈류량 및 뇌혈류량에 거의 영향을 주지 않았다. 고려홍삼사포닌에 의한 뇌혈류량의 증가는 복강내 및 경구로 투여할 경우는 관찰할 수 있으나 정맥내로 직접 투여할 경우는 관찰되지 않았다. 이상의 결과를 종합해 볼 때 고려홍삼의 사포닌 성분은 뇌혈류량을 증가시키는 혈류개선작용이 있는 것으로 사료된다.

한국인의 G Protein $\beta$3 Subunit유전자의 다형성과 뇌혈관 질환과의 상관성에 대한 연구 (Prospective Evaluation of the G-protein $\beta$3 Subunit (GNB3) Gene 825T Polymorphism is Associated With Cerebral Infarction in Korean Population)

  • 최민희;이진우;이경진;이효정;노삼웅;최현;조기호;홍무창;신민규;김영석;배현수
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.719-727
    • /
    • 2003
  • Background and purpose: Hypertension and obesity has been implicated in the most important risk factors for stroke. The original finding that the G-protein beta3 subunit (GNB3) C825T allele associates with essential hypertension and obesity has been confirmed in several different populations. Hence, our objective was to determine whether the GNB3 C825T polymorphism predicts interindividual variation in stroke. Method: We recruited 361 stroke patients (cerebral infarction, n=278; intracerebral hemorrhage (ICH), n=83) and 199 healthy control subjects. Subjects were genotyped for GNB3 C825T mutation and findings were investigated for association with stroke. Result: The GNB3 T/T type was significantly associated with cerebral infarction prevalence (OR, 1.98; 95% Cl, 1.14-3.46; p=0.015). While, ICH was not found to be significantly associated with GNB3 T/T type (OR, 1.63; 95% ICH, 0.74-3.56; p=0.219). Similarly, no significant association was determined between GNB T/C type, and cerebral infarction (OR, 1.09; 95% Cl, 0.68-1.74; p=0.716), and ICH (OR, 1.14; 95% Cl, 0.59-2.21; p=0.697). Conclusion: In clinical characteristics, this study shows no differences among GNB3 genotypes, that are BMI, WH ratio. hypertension rate, and ischemic heart disease rate, total lipid level, triglycerides level, total cholesterol level, HDL cholesterol level, prothrombine time, with the exception of LDL cholesterol concentrations. However, our subjects showed an inverse relationship between LDL cholesterol level and the risk of cerebral infarction. We have shown that the GNB3 T/T genotype is strongly associated with cerebral infarction. (OR, 1.98; 95% Cl, 1.14-3.46; p=0.015).

Differential Activation of Ras/Raf/MAPK Pathway between Heart and Cerebral Artery in Isoproterenol-induced Cardiac Hypertrophy

  • Kim, Hyun-Ju;Kim, Na-Ri;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Warda, Mohamed;Kang, Sung-Hyun;Thu, Vu-Thi;Khoa, Tran-Minh;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.299-304
    • /
    • 2005
  • Cardiac hypertrophy contributes an increased risk to major cerebrovascular events. However, the molecular mechanisms underlying cerebrovascular dysfunction during cardiac hypertrophy have not yet been characterized. In the present study, we examined the molecular mechanism of isoproterenol (ISO)-evoked activation of Ras/Raf/MAPK pathways as well as PKA activity in cerebral artery of rabbits, and we also studied whether the activations of these signaling pathways were altered in cerebral artery, during ISO-induced cardiac hypertrophy compared to heart itself. The results show that the mRNA level of c-fos (not c-jun and c-myc) in heart and these genes in cerebral artery were considerably increased during cardiac hypertrophy. These results that the PKA activity and activations of Ras/Raf/ERK cascade as well as c-fos expression in rabbit heart during cardiac hypertrophy were consistent with previous reports. Interestingly, however, we also showed a novel finding that the decreased PKA activity might have differential effects on Ras and Raf expression in cerebral artery during cardiac hypertrophy. In conclusion, there are differences in molecular mechanisms between heart and cerebral artery during cardiac hypertrophy when stimulated with β2 adrenoreceptor (AR), suggesting a possible mechanism underlying cerebrovascular dysfunction during cardiac hypertrophy.

Effects of Prostaglandin $F_{2{\alpha}}$ on Membrane Potentials and $K^+$ Currents in Rabbit Middle Cerebral Arterial Cells

  • Kim, Na-Ri;Han, Jin;Kim, Won-Gue;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권4호
    • /
    • pp.301-309
    • /
    • 2000
  • The purpose of our investigation was to examine the effects of prostaglandin $F_{2{\alpha}}\;(PGF_{2{\alpha}})$ on membrane potentials, $Ca^{2+}-activated\;K^+\;(K_{Ca})$ channels, and delayed rectifier $K^+(K_V)$ channels using the patch-clamp technique in single rabbit middle cerebral arterial smooth muscle cells. $PGF_{2{\alpha}}$ significantly hyperpolarized membrane potentials and increased outward whole-cell K currents. $PGF_{2{\alpha}}$ increased open-state probability of $K_{Ca}$ channels without the change of the open and closed kinetics. $PGF_{2{\alpha}}$ increased the amplitudes of $K_V$ currents with a leftward shift of activation and inactivation curves and a decrease of activation time constant. Our results suggest that the activation of $K_{Ca}$ and $K_V$ channels, at least in part, may lead to attenuate or counteract vasoconstriction by $PGF_{2{\alpha}}$ in middle cerebral artery.

  • PDF

Decreased Voltage Dependent $K^+$ Currents in Cerebral Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rat

  • Oh, Young-Sun;Kim, Se-Hoon;Kim, Hoe-Suk;Jeon, Byeong-Hwa;Chang, Seok-Jong;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.471-479
    • /
    • 1999
  • The Kv channel activity in vascular smooth muscle cell plays an important role in the regulation of membrane potential and blood vessel tone. It was postulated that increased blood vessel tone in hypertension was associated with alteration of Kv channel and membrane potential. Therefore, using whole cell mode of patch-clamp technique, the membrane potential and the 4-AP-sensitive Kv current in cerebral arterial smooth muscle cells were compared between normotensive rat and one-kidney, one-clip Goldblatt hypertensive rat (lK,lC-GBH rat). Cell capacitance of hypertensive rat was similar to that of normotensive rat. Cell capacitance of normotensive rat and 1K,lC-GBH rat were $20.8{\pm}2.3$ and $19.5{\pm}1.4$ pF, respectively. The resting membrane potentials measured in current clamp mode from normotensive rat and 1K,lC-GBH rat were $-45.9{\pm}1.7$ and $-38.5{\pm}1.6$ mV, respectively. 4-AP (5 mM) caused the resting membrane potential hypopolarize but charybdotoxin $(0.1\;{\mu}M)$ did not cause any change of membrane potential. Component of 4-AP-sensitive Kv current was smaller in 1K,lC-GBH rat than in normotensive rat. The voltage dependence of steady-state activation and inactivation of Kv channel determined by using double-pulse protocol showed no significant difference. These results suggest that 4-AP-sensitive Kv channels playa major role in the regulation of membrane potential in cerebral arterial smooth muscle cells and alterations of 4-AP-sensitive Kv channels would contribute to hypopolarization of membrane potential in 1K,lC-GBH rat.

  • PDF

The Role of Aquaporin-4 in Cerebral Edema Formation after Focal Cerebral Ischemia in Rats

  • Song, Young-Jin;Bae, Hae-Rahn;Ha, Se-Un;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • 제41권1호
    • /
    • pp.30-38
    • /
    • 2007
  • Objective : To elucidate the role of aquaporin-4[AQP4] in cerebral edema formation, we studied the expression and subcellular localization of AQP4 in astrocytes after focal cerebral ischemia. Methods : Cerebral ischemia were induced by permanent middle cerebral artery[MCA] occlusion in rats and estimated by the discoloration after triphenyltetrazolium chloride[TTC] immersion. Change of AQP4 expression were evaluated using western blot. Localization of AQP4 was assessed by confocal microscopy and its interaction with ${\alpha}-syntrophin$ was analyzed by immunoprecipitation. Results : After right MCA occlusion, the size of infarct and number of apoptotic cells increased with time. The ratio of GluR1/GluR2 expression also increased during ischemia. The polarized localization of AQP4 in the endfeet of astrocytes contacting with ventricles, vessels and pia mater was changed into the diffuse distribution in cytoplasm. The interactions of AQP4 and Kir with ${\alpha}-syntrophin$, an adaptor of dystrophin complex, were disrupted by cerebral ischemia. Conclusion : The deranged spatial buffering function of astrocytes due to mislocalized AQP4/Kir4.1 channel as well as increased assembly of $Ca^{2+}$ permeable AMPA receptors might contribute to the development of edema formation and the excitotoxic neuronal cell death during ischemia.

당귀와 백수오 추출물이 뇌혈류 변화에 미치는 영향 (Effects of Angelicae Gigantis and Cynanchum wilfordii Hemsley Extract on the Changes of Cerebral Flow)

  • 정현우;양동혁;송민선;정종길;이상영;최찬헌
    • 동의생리병리학회지
    • /
    • 제27권4호
    • /
    • pp.446-452
    • /
    • 2013
  • This study was designed to investigate the effects of Angelicae Gigantis and Cynanchum wilfordii Hemsley extract (AAC) on the changes of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. The results were as follows. AAC significantly increased rCBF but significantly decreased MABP in a dose-dependent manner in normal rats. The increase of AAC-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and AAC-induced MABP was decreased by pretreatment with methylene blue. In cerebral ischemics, rCBF was stably improved by AAC (10 mg/kg, i.p.) during the period of cerebral reperfusion, which was contrasted with the findings of rapid and marked increase in the control group. These results suggest that AAC can increase rCBF in the normal state, as well as improve the stability of rCBF in cerebral ischemic state.

Sensitivity of Rabbit Cerebral Artery to Serotonin is Increased with the Moderate Increase of Extracellular $K^+$

  • Suh, Suk-Hyo;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.695-703
    • /
    • 1998
  • $[K^+]_o$ can be increased under a variety of conditions including subarachnoid hemorrhage. The increase of $[K^+]_o$ in the range of $5{\sim}15$ mM may affect tensions of blood vessels and can change their sensitivity to various vasoactive substances. Therefore, it was examined in the present study whether the sensitivity of cerebral arteries to vasoactive substances can be changed with the moderate increase of $[K^+]_o$, using Mulvany-type myograph and $[Ca^{2+}]_c$ measurement. The contractions of basilar artery and branch of middle cerebral artery induced by histamine were not increased with the elevation of $[K^+]_o$ from 6 mM to 9 mM or 12 mM. On the contrary, the contractions induced by serotonin were significantly increased with the elevation of $[K^+]_o$. The contractions were also significantly increased by the treatment with nitro-L-arginine $(10^{-4}$ M for 20 minutes). In the nitro-L-arginine treated arteries, the contractions induced by serotonin were significantly increased with the elevation of $[K^+]_o$ from 6 mM to 12 mM. $K^+-induced$ relaxation was evoked with the stepwise increment of extracellular $K^+$ from 0 or 2 mM to 12 mM by 2 mM in basilar arterial rings, which were contracted by histamine. But $[K^+]_o$ elevation from 4 or 6 mM to 12 mM by the stepwise increment evoked no significant relaxation. Basal tension of basilar artery was increased with $[K^+]_o$ elevation from 6 mM to 12 mM by 2 mM steps or by the treatment with ouabain and the increase of basal tension was blocked by verapamil. The cytosolic free $Ca^{2+}$ level was not increased by the single treatment with serotonin or with the elevation of $[K^+]_o$ from 4 mM to 8 or 12 mM. In contrast to the single treatment, the $Ca^{2+}$ level was increased by the combined treatment with serotonin and the elevation of $[K^+]_o$. The increase of free $Ca^{2+}$ concentration was blocked by the treatment with verapamil. These data suggest that the sensitivity of cerebral artery to serotonin is increased with the moderate increase of $[K^+]_o$ and the increased sensitivity to serotonin is due to the increased $[Ca^{2+}]_i$ induced by extracellular $Ca^{2+}$ influx.

  • PDF

CADASIL 동물모델의 생리학적 접근 및 연구적 가치의 예측 (Physiological approach of CADASIL animal model and its predictable implication)

  • 정성철;고은아
    • Journal of Medicine and Life Science
    • /
    • 제16권3호
    • /
    • pp.55-59
    • /
    • 2019
  • Cerebral vessels are functionally and structurally specialized to provide adequate blood flow to brain which shows high metabolic rates. Cerebral hemorrhage or ischemic infarction due to cerebrovascular injury or occlusion can cause the immediate brain damage, and if not treated rapidly, can lead to serious or permanent brain damages, and sometimes life-threatening. Unlike these popular cerebrovascular diseases, there are diseases caused by genetic problems. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of them. CADASIL does not show the high incidence, but it is considered to be significantly affected by regional obstructiveness such as islands and therefore, to be an important genetic disease in Jeju. This paper aims to summarize the possibility of animal model research that can provide preclinical data for CADASIL disease research and to evaluate its applicability in future research plans.

Moderate Elevation of Extracellular $K^+$ Concentration Induces Vasorelaxation in Isolated Rat, Rabbit and Human Cerebral Arteries: Role of Na Pump and Ba-Sensitive Process

  • Kim, Dong-Ho;Kim, Sung-Joon;Lee, Sang-Jin;Park, Sung-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.705-714
    • /
    • 1998
  • Cerebral blood vessels relax when extracellular $K^+$ concentrations $([K^+])_e$ are elevated moderately $(2{\sim}15$ mM, $K^+-induced$ vasorelaxation). We have therefore studied the underlying mechanism for this $K^+-induced$ vasorelaxation in the isolated middle cerebral arteries (MCAs). The effects of ouabain and $Ba^{2+}\;on\;K^+-induced$ vasorelaxation were examined to determine the role of sodium pump and/or Ba-sensitive process (possibly, inward rectifier K current) in the mechanism. Mulvany myograph was used to study 24 rats, 18 rabbits, and 10 humans MCAs $(216{\pm}3\;{\mu}m,\;347{\pm}7\;{\mu}m,\;and\;597{\pm}39\;{\mu}m$ in diameter when stretched to a tension equivalent to 55 mmHg). High $K^+$ (125 mM) and $PGF_{2{\alpha}}\;(1{\sim}10\;{\mu}M)$ induced concentration-dependent contractions in all 3 species, while histamine $(10{\sim}50\;{\mu}M)$ evoked contraction only in the rabbits and induced relaxation in the rats and humans. Addition of $K^+\;(2{\sim}10\;{\mu}M)$ to the control solution induced vasorelaxations. These effects were inhibited by the pretreatment with both ouabain $(10\;{\mu}M)$ and $Ba^{2+}\;(0.1{\sim}0.3\;mM)$ in the rat, but only with ouabain $(10\;{\mu}M)$ in the rabbit and human. These results suggest that $K^+-induced$ vasorelaxation occurs via the stimulation of electrogenic Na pump in the rabbit and human MCAs, while in the rat MCAs via the activation of both Na pump and Ba-sensitive process.

  • PDF