• Title/Summary/Keyword: Cerebral Ischemic Injury

Search Result 127, Processing Time 0.03 seconds

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Protective Effects of Kamidojuk-san on the Nervous Systems

  • Hwang Chang Ha;Nam Gung Uk;Park Jong Oh;Lee Yong Koo;Choi Sun Mi;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.586-595
    • /
    • 2004
  • Kamidojuk-San (KDJS) is known to be effective for treating cardiovascular diseases such hypertension, and clinically applied for the treatment of cerebral palsy or stoke patients. Yet, the overall mechanisms underlying its activity at the cellular levels are not known. Using experimental animal system, we investigated whether KDJS has protective effects on cells in cardiovascular and nervous systems. KDJS was found to rescue death of cultured primary neurons induced by AMPA, NMDA and kainate as well as BSO and Fe/sup 2+/ treatments. Moreover, KDJS treatment promoted animal's recovery from coma induced by a lethal dose of KCN treatment, and improved survival in animals exposed to lethal dose of KCN. Neurological examinations further showed that KDJS reduced the time which is required for animals to respond in terms of forelimb and hindlimb movements. To examine its physiological effects on cardiovascular and nervous systems, we induced ischemic injury in hippocampal neurons and cerebral neurons by middle cerebral artery (MCA) occlusion. Histological examination revealed that KDJS significantly protected neurons from ischemic damage. Thus, the present data suggest that KDJS may play an important role in protecting cells of cardiovascular and nervous systems from external noxious stimulations.

Neuroprotective effects of Korean White ginseng and Red ginseng in an ischemic stroke mouse model

  • Jin, Myungho;Kim, Kyung-Min;Lim, Chiyeon;Cho, Suin;Kim, Young Kyun
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.275-282
    • /
    • 2022
  • Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

Effect of Bambusae Caulis in Liquamen(Jukryuk) on Ischemic Damage to 4 Vessel Occlusion and Middle Cerebral Artery Occlusion in Mice (죽력(竹瀝)이 흰쥐의 중대뇌동맥(中大腦動脈) 및 전뇌허혈(全腦虛血) 폐쇄 허혈모델에 미치는 영향)

  • Kim, Jae-Hong;Hong, Jin-Woo;Na, Byung-Jo;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Cham-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.629-640
    • /
    • 2008
  • Objective : The purpose of this study was to investigate the neuroprotective effect of Jukryuk on 4-vessel occlusion(4-VO) and middle cerebral artery (MCA) ischemia. Method : After administration of Jukryuk, we compared the Jukryuk-treated group, the control, and the sham groups, in view of several points as follows 1) We evaluated the damage characterized by coagulative cell change of pyramidal neurons and pronounced gliosis in each group 2) We counted the number of normal pyramidal shapes after ischemia in each group 3) Immunohistochemistry (cyclooxygenase-2) 4) In focal ischemic injury model, we measured the volume of ischemic area Results : In this experiment, the effect of Jukryuk was determined to be protecting neuron cell shape, reducing the number of neuron cells damaged by ischemia and the volume of the ischemic area. In immunohistochemistry, Jukryuk reduced cyclooxygenase-2 expression Conclusions : According to this study, Jukryuk can protect neuron cells from injury by cerebrovascular ischemia.

  • PDF

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Effects of Complex formula including Korea Red Ginseng (CKRG) on Brain Ischemia Induced by Occlusion of Middle Cerebral Artery (고려홍삼 복합방이 실험적 뇌경색에 미치는 영향)

  • Oh, Sang-Jin;Park, Il-Hyun;Kim, Sung-Hoon
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.161-171
    • /
    • 1999
  • This study was performed to investigate the effect of complex formula(CKRG) consisting of Panax ginseng Radix rubra Koreana. Ganoderma, Cinnamomi Cortex, Glycyrrhizae Radix and Laminariae Thallus on brain ischemia and injury such as KCN-induced brain injury, forced brain ischemia, pulmonary thrombosis. The results were summarized as follows: 1. CKRG extracts showed a decrease of the duration of KCN-induced coma and showcd an increase in life expectancy. 2. CKRG extracts showed a decrease of neurologic grade in hind limb but did not affect neurologic grades in fore limb. Also. CKRG extracts showed a significant decrease of brain ischemic area and edema in MCA occlusion, 3. CKRG extracts showed a protective effect on pulmonary thrombosis induced by collagen and epinephrine. These data suggested that CKRG extracts could be applied to the protection of brain ischemia and injury.

  • PDF

Stachys sieboldii M iq. Protects SH-SY5Y Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Inhibition of Mitochondrion-Mediated Apoptosis Pathway (허혈-재관류 유도 SH-SY5Y 모델에서 미토콘드리아 매개 Apoptosis 기전 제어를 통한 초석잠 추출물의 세포보호 효과)

  • Jin-Woo Jeong;Eun Jung Ahn;Chul Hwan Kim;Su Young Shin;Seung Young Lee;Kyung-Min Choi;Chang-Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.57-57
    • /
    • 2021
  • Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. Stachys sieboldii Miq. (Chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of S. sieboldii Miq. (SSM) in OGD/R induced neuronal injury is not yet fully understood. The present research is aimed to investigate the protective effect and possible mechanisms of SSM extract treatment in an in vitro model of OGD/R to simulate ischemia/reperfusion Injury. Pretreatment of these cells with SSM significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) by increasing GPx, SOD, and decreasing MDA. SSM decreased mitochondrial damage caused by OGD/R injury and inhibited the release of cyt-c from mitochondrion to cytoplasm in SH-SY5Y cells. Furthermore, neuronal cell apoptosis caused by OGD/R injury was inhibited by SSM, and SSM could decrease apoptosis by increasing ratio of Bcl-2/Bax and inhibiting caspase signaling pathway in SH-SY5Y cells. SSM demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro model, and this effect was the inhibition of mitochondria-mediated apoptosis pathway by scavenging of ROS generation. Therefore, SSM may be a promising neuroprotective strategy against ischemic stroke.

  • PDF

Neuroprotective Effects of Ginkgo biloba extract, GBB, in the Transient Ischemic Rat Model

  • Oh, Jin-Kyung;Jung, Ji-Wook;Oh, Hye-Rim;Han, Yong-Nam;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • In the present study, we investigated the neuroprotective effects of standardized Ginkgo biloba extract (GBB) (total terpene trilactones, 13 ${\pm}$ 3%; biflavone, 4.5 ${\pm}$ 1.5%; flavonol glycoside, < 8%; proanthocyanidine, under detection limit) on ischemia-reperfusion-induced brain injury in the rats. Ischemia was induced by the intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 22 h. GBB was orally administered, promptly prior to reperfusion and 2 h after. Total infarction volume in the ipsilateral hemispheres of ischemia-reperfusion rats were significantly reduced by treatment with GBB in a dose-dependent manner (P<0.05). The therapeutic time window of GBB was 3 h in this ischemia-reperfusion rat model. Furthermore, GBB also significantly inhibited increased neutrophil infiltration of ischemic brain tissue, as estimated by myeloperoxidase activity. These findings suggest that GBB plays a crucial protective role in ischemia-induced brain injury, in part, via inhibition of neutrophil infiltration, and suggest that this GBB could serve as a neuroprotective agent following transient focal ischemic brain injury.

The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia (우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향)

  • Yoon, Hyun-Seok;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Changes in plasma lipoxin A4, resolvins and CD59 levels after ischemic and traumatic brain injuries in rats

  • Jung, Jun-Sub;Kho, A Ra;Lee, Song Hee;Choi, Bo Young;Kang, Shin-Hae;Koh, Jae-Young;Suh, Sang Won;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • Ischemic and traumatic brain injuries are the major acute central nervous system disorders that need to be adequately diagnosed and treated. To find biomarkers for these acute brain injuries, plasma levels of some specialized pro-resolving mediators (SPMs, i.e., lipoxin A4 [LXA4], resolvin [Rv] E1, RvE2, RvD1 and RvD2), CD59 and interleukin (IL)-6 were measured at 0, 6, 24, 72, and 168 h after global cerebral ischemic (GCI) and traumatic brain injuries (TBI) in rats. Plasma LXA4 levels tended to increase at 24 and 72 h after GCI. Plasma RvE1, RvE2, RvD1, and RvD2 levels showed a biphasic response to GCI; a significant decrease at 6 h with a return to the levels of the sham group at 24 h, and again a decrease at 72 h. Plasma CD59 levels increased at 6 and 24 h post-GCI, and returned to basal levels at 72 h post-GCI. For TBI, plasma LXA4 levels tended to decrease, while RvE1, RvE2, RvD1, and RvD2 showed barely significant changes. Plasma IL-6 levels were significantly increased after GCI and TBI, but with different time courses. These results show that plasma LXA4, RvE1, RvE2, RvD1, RvD2, and CD59 levels display differential responses to GCI and TBI, and need to be evaluated for their usefulness as biomarkers.