• Title/Summary/Keyword: Ceramic-polymer composite

Search Result 162, Processing Time 0.031 seconds

Characterization and Evaluation of Porous Vermiculite Containing Polyethylene Composites Film

  • Lee, Hye Sun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This work reported the preparation and evaluation of a freshness-keeping film prepared by composite of a porous ceramic material such as vermiculite and polyethylene polymer. The ceramic material was pretreated physically and chemically to control the specific surface areas and particle size. A high content master-batch was prepared using the pretreated vermiculite. The master-batch, which contained 30% ceramic material, was mixed with a polymer material to prepare a film containing 3% vermiculite. The oxygen permeability and various physicochemical properties were evaluated for the prepared films. Compared to plain polyethylene film, the vermiculite loaded polyethylene film has a freshness maintenance property, indicating the creation of an improved film.

Microtensile bond strength of CAD/CAM-fabricated polymer-ceramics to different adhesive resin cements

  • Sadighpour, Leyla;Geramipanah, Farideh;Ghasri, Zahra;Neshatian, Mehrnoosh
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.40.1-40.10
    • /
    • 2018
  • Objectives: This study evaluated the microtensile bond strength (${\mu}TBS$) of polymer-ceramic and indirect composite resin with 3 classes of resin cements. Materials and Methods: Two computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated polymer-ceramics (Enamic [ENA; Vita] and Lava Ultimate [LAV; 3M ESPE]) and a laboratory indirect composite resin (Gradia [GRA; GC Corp.]) were equally divided into 6 groups (n = 18) with 3 classes of resin cements: Variolink N (VAR; Vivadent), RelyX U200 (RXU; 3M ESPE), and Panavia F2 (PAN; Kuraray). The ${\mu}TBS$ values were compared between groups by 2-way analysis of variance and the post hoc Tamhane test (${\alpha}=0.05$). Results: Restorative materials and resin cements significantly influenced ${\mu}TBS$ (p < 0.05). In the GRA group, the highest ${\mu}TBS$ was found with RXU ($27.40{\pm}5.39N$) and the lowest with VAR ($13.54{\pm}6.04N$) (p < 0.05). Similar trends were observed in the ENA group. In the LAV group, the highest ${\mu}TBS$ was observed with VAR ($27.45{\pm}5.84N$) and the lowest with PAN ($10.67{\pm}4.37N$) (p < 0.05). PAN had comparable results to those of ENA and GRA, whereas the ${\mu}TBS$ values were significantly lower with LAV (p = 0.001). The highest bond strength of RXU was found with GRA ($27.40{\pm}5.39N$, p = 0.001). PAN showed the lowest ${\mu}TBS$ with LAV ($10.67{\pm}4.37N$; p < 0.001). Conclusions: When applied according to the manufacturers' recommendations, the ${\mu}TBS$ of polymer-ceramic CAD/CAM materials and indirect composites is influenced by the luting cements.

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape (원호형 1-3 압전 복합재 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

A New Preparation Method of Nafion/Mordenite Composite Membrane for Polymer Electrolyte Membrane Fuel Cell above 100℃ Operation (100℃ 이상에서 작동하는 고분자 전해질형 연료전지용 나피온/Mordenite 복합체 막의 새로운 제조 방법)

  • 곽상희;양태현;김창수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • The preparation method for composite membranes of high temperature operation above $100^{\circ}C$ for Polymer Electrolyte Membrane Fuel Cells (PEMFCs ) was presented, using perfluorosulfonylfluoride Nafion resin and mordenite, in addition to the physical properties, proton conductivity and single cells performance for it. The composite membranes were fabricated via melting of Nafion resin with various mordenite content. As the increase of mordenite content, at high temperature range, proton conductivity of the composite membrane increased due to the late dehydration rate of existent water in the mordenite. Also, from the result of the current-voltage relationship for single cells under $130^{\circ}C$ operation condition, the composite membrane cell with l0 wt% mordenite content showed better performance than that of the others over the entire current density range. This result indicated that the existent water in the composite membrane with l0 wt% mordenite content was higher than that with the others, thereby maintains its conductivity. Based upon the results of experiments, therefore, a Nafion/mordenite composite membrane prepared by this work is thought to be a satisfactory polymer electrolyte membrane for PEMFC operation above $100^{\circ}C$.

Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging

  • Jeong, Un Seong;Lee, Yoon Joo;Shin, Dong Geun;Lim, Hyung Mi;Mun, So Youn;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Shim, Kwang Bo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.351-354
    • /
    • 2015
  • In this study, alumina plates 9~25 μm in size were used as thermal fillers, and epoxy resin was used as a polymer matrix. Oriented alumina plate/epoxy composites were prepared using a rolling method. The effect of ordering alumina plates increased with alumina plate size. The thermal conductivity and flexural strength of the composites were investigated. The horizontal thermal conductivity of the oriented composite was significantly higher than the vertical thermal conductivity. The horizontal thermal conductivity of the 75 wt% alumina content was 8.78 W/mk, although the vertical thermal conductivity was 1.04 W/mk. Ordering of the alumina plate using a rolling method significantly improved the thermal conductivity in the horizontal direction. The flexural strengths of the ordered alumina/epoxy composites prepared at different curing temperatures were measured.

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries (고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질)

  • Jang, So-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2016
  • In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.