• Title/Summary/Keyword: Ceramic thick film

검색결과 206건 처리시간 0.027초

Characteristics of perovskite-structure Sr(Ti1-xFex)O3 thick film gas sensors (페롭스카이트 구조 Sr(Ti1-xFex)O3 후막 가스센서의 특성)

  • Jin, Guang-Hu;Lee, Woon-Young;Lee, Hyun-Gyu;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • 제18권6호
    • /
    • pp.456-461
    • /
    • 2009
  • Perovskite-structure $Sr(Ti_{1-x}Fe_x)O_3$ thick films, in which x is 0.4 or 0.6, were prepared by normal ceramic process on alumina substrate. Electrical resistance was measured as a function of thermal treatment condition including atmosphere, time, and temperature. The resistance of $Sr(Ti_{1-x}Fe_x)O_3$ films is lower than those of $SrTiO_3$ or $SrFeO_3$ films. The temperature coefficient of resistance over $550^{\circ}C$ was measured to be 0 for the $Sr(Ti_{1-x}Fe_x)O_3$ films after thermal treatment at $1100^{\circ}C$ in air. The sensing property of the films was also measured as a function of temperature and gas such as $O_2$, CO, $CO_2$, NO and $NO_2$. $Sr(Ti_{1-x}Fe_x)O_3$ films showed a good sensing property for $O_2$, but no sensing signal for CO, $CO_2$, NO and $NO_2$.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • 제49권5호
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

Preparation and crystallization of non-alkali multicomponent glasses for thick-film insulators (후막회로 절연용 다성분계 무알카리 유리의 제조 및 결정화 특성)

  • 이헌수;손명모;박희찬
    • Electrical & Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.95-101
    • /
    • 1995
  • Crystallizable glasses with precipitation of celsian, anorthite, wollastonite and gahnite were prepared for the purpose of insulating dielectric layers in devices such as integrated circuit substrates. The starting glasses were prepared by melting the batches for 1 hour at 1450.deg. C and then Quenching to a distilled water. And crystallization behavior of these glasses were studied by DTA, TMA, XRD analysis and by the measurement of dielectric properties. The overall composition of the glass-ceramic consists in weight percent of 30-35% A1$_{2}$O$_{3}$, 13-26% BaO, 5-21% CaO, 10-24% ZnO, 4.5-9.0% TiO$_{2}$ and 4-8% B$_{2}$O$_{3}$. As a result, in barium-rich glasses only celsian phase was developed in the range of 850-900.deg. C. Also, the thermal expansion coefficient, dielectric constant and quality factor of these glass-ceramics were 68*10$^{-7}$ /.deg. C, about 9 and more than 1000, respectively.

  • PDF

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics (알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제28권3호
    • /
    • pp.170-174
    • /
    • 2015
  • Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.

The Powder Synthesis of (Bi,Pb)-2223 System Superconductor by Oxalate Method and Thick Film Preparation (옥살산염법에 의한 (Bi, Pb)-2223계 초전도 분말 합성과 후막 제조)

  • 하성원;김형태;이응상
    • Journal of the Korean Ceramic Society
    • /
    • 제34권10호
    • /
    • pp.1083-1091
    • /
    • 1997
  • As one of the chemical powder fabrication methods, the powder preparation method by using oxalate has the following advantages; (1) easy to control the chemical stoichiometry, (2) easy to fabricate homogeneous and fine particles, and (3) easy to be thermaly decomposed at low temperature. In the present study, the initial morphology and size distribution of the powder were controlled and the homogeniaty was improved. By carefully controlling the pH with NH4OH, the Bi(Pb)-Sr-Ca-Cu-O superconducting powders were prepared and investigated for their properties. The microstructures and the superconducting properties of the pelletized samples were investigated. Also, the microstructures and electrical properties of the samples prepared by tape casting method were investigated. The fabricated powders were spherical with less than 400 nm, but most of them were agglomerated to be 1~3 ${\mu}{\textrm}{m}$ in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in air was 110K. And the critical currents of annealed samples in air prepared by tape casting process for 24 hours and 72 hours were 0.6 A (Jc=600A/$\textrm{cm}^2$) and 1.9A (Jc=1, 900A/$\textrm{cm}^2$) respectively.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ Ceramics with Addition of Zn-B-O Glass Systems (Zn-B-O 글라스 첨가에 의한 Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ 세라믹스의 마이크로파 유전특성)

  • In, Chi-Seung;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권12호
    • /
    • pp.781-785
    • /
    • 2016
  • With trend of the miniaturization and the high-functionalizing of mobile communication system, low-loss microwave dielectric materials are widely used for high frequency communication components. These dielectric materials should be co-sintered with highly electric-conducting metal such as silver or copper for high-frequency and thick film process application. Sintering temperature of $Ca(Li_{1/3}Nd_{2/3})_{0.2}Ti_{0.8}]O_{3-{\delta}}$, which has excellent dielectric properties such as ${\varepsilon}_r$ above 40, quality factor ($Q{\cdot}f_0$) above 16,000 GHz, and TCF (temperature coefficient of resonant frequency) of $-20{\sim}-10ppm/^{\circ}C$, is reported as high as $1,175^{\circ}C$, so it could not be co-sintered with silver or copper. Therefore in this study, low-temperature melting glasses of Zn-B-O and Zn-B-Si-O systems were added to $Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ to lower its sintering temperature under $900^{\circ}C$ without losing excellency of dielectric properties. With 15 weight % of Zn-B-Si-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.11g/cm^3$, ${\varepsilon}_r$ of 40.1, $Q{\cdot}f_0$ of 4,869 GHz, and TCF of $-5.9ppm/^{\circ}C$. With 15 weight % of Zn-B-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.14g/cm^3$, ${\varepsilon}_r$ of 40.4, $Q{\cdot}f_0$ of 7,059 GHz, and TCF of $-0.92ppm/^{\circ}C$.

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices (메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성)

  • Gang, Dong-Hun;Choe, Hun-Sang;Lee, Jong-Han;Im, Geun-Sik;Jang, Yu-Min;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • 제12권6호
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

Microstructures and Electrical Properties of $RuO_2$Bottom Electrode for Ferroelectric Thin Films

  • Shin, Woong-Chul;Yang, Cheol-Hoon;Jun-SiK Hwang;Yoon, Soon-Gil
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.263-268
    • /
    • 1997
  • RuO$_3$ thin films were deposited on Si(100) substrate at low temperatures by hot-wall metalorganic chemical vapor deposition. Bis(cyclopentadienyl) ruthenium, Ru$(C_5H_5)_2$, was used as the precursor RuO$_2$single phase was obtained at a low deposition temperature of 25$0^{\circ}C$ and the crystallinity of RuO$_2$thin films improved with increasing deposition temperature. RuO$_2$thin films grow perpendicularly to the substrate and show the columnar structure. The grain size of RuO$_2$films drastically increases with increasing the deposition temperature. The resistivity of the 180 nm-thick RuO$_2$thin films deposited at 27$0^{\circ}C$ was 136 $\mu$$\Omega$-cm and increased with decreasing film thickness. SrBi$_2Ta_2O_4$ thin films deposited by rf magnetron sputtering on the RuO$_2$bottom electrodes showed a fatigue-free characteristics up to ~10$^10$ cycles under 5 V bipolar square pulses and the remanent polarization, 2 P$_r$ and the coercive field, 2 E, were 5.2$\mu$C/$\textrm{cm}^2$ and 76.0 kV/cm, respectively, for an applied voltage of 5 V The leakage current density was about 7.0$\times$10$^{-6}$ A/$\textrm{cm}^2$ at 150 kV/cm.

  • PDF