Abstract
RuO$_3$ thin films were deposited on Si(100) substrate at low temperatures by hot-wall metalorganic chemical vapor deposition. Bis(cyclopentadienyl) ruthenium, Ru$(C_5H_5)_2$, was used as the precursor RuO$_2$single phase was obtained at a low deposition temperature of 25$0^{\circ}C$ and the crystallinity of RuO$_2$thin films improved with increasing deposition temperature. RuO$_2$thin films grow perpendicularly to the substrate and show the columnar structure. The grain size of RuO$_2$films drastically increases with increasing the deposition temperature. The resistivity of the 180 nm-thick RuO$_2$thin films deposited at 27$0^{\circ}C$ was 136 $\mu$$\Omega$-cm and increased with decreasing film thickness. SrBi$_2Ta_2O_4$ thin films deposited by rf magnetron sputtering on the RuO$_2$bottom electrodes showed a fatigue-free characteristics up to ~10$^10$ cycles under 5 V bipolar square pulses and the remanent polarization, 2 P$_r$ and the coercive field, 2 E, were 5.2$\mu$C/$\textrm{cm}^2$ and 76.0 kV/cm, respectively, for an applied voltage of 5 V The leakage current density was about 7.0$\times$10$^{-6}$ A/$\textrm{cm}^2$ at 150 kV/cm.