• Title/Summary/Keyword: Ceramic deposition

검색결과 735건 처리시간 0.021초

$TiCl_4/AlCl_3/N_2/Ar/H_2$ 반응계를 사용하는 플라즈마화학증착법에 의한 $Ti_{1-x}Al_xN$ 박막의 구조분석 및 물성 (Structural Analyses and Properties of $Ti_{1-x}Al_xN$ Films Deposited by PACVD Using a $TiCl_4/AlCl_3/N_2/Ar/H_2$ Gas Mixture)

  • 김광호;이성호
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.809-816
    • /
    • 1995
  • Ti1-xAlxN films were successfully deposited on high speed steel and silicon wafer by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/Ar/H2 gas mixture. Plasma process enabled N2 gas to nitride AlCl3, which is not possible in sense of thermodynamics. XPS analyses revealed that the deposited layer contained Al-N bond as well as Ti-N bond. Ti1-xAlxN films were polycrystalline and had single phase, B1-NaCl structure of TiN. Interplanar distance, d200, of (200) crystal plane of Ti1-xAlxN was, however, decreased with Al content, x. Al incorporation into TiN caused the grain size to be finer and changed strong (200) preferred orientation of TiN to random oriented microstructure. Those microstructural changes with Al addition resulted in the increase of micro-hardness of Ti1-xAlxN film up to 2800Kg/$\textrm{mm}^2$ compared with 1400Kg/$\textrm{mm}^2$ of TiN.

  • PDF

증착조건 및 열처리 분위기가 CaWO4 형광체의 발광특성에 미치는 영향 (Effect of Deposition Parameters and Post-annealing on the Luminescent Properties of CaWO4 Phosphor)

  • 한상혁;정승묵;송국현;김영진
    • 한국세라믹학회지
    • /
    • 제40권10호
    • /
    • pp.949-953
    • /
    • 2003
  • 청색 발광특성을 갖는 CaWO$_4$ 형광체를 rf 마그네트론 스퍼터링 방법으로 박막화를 시도하고,증착변수와 열처리 조건이 발광특성에 미치는 영향을 관찰하였다. 증착조건인 산소/아르곤 가스비, 기판온도에 따라서 박막의 구조적, 화학양론적 물성이 크게 영향을 받고 있었다. 후 열처리 공정에 의하여 발광특성의 향상을 얻을 수 있었다. 산소공공에 의한 청록색 영역의 발광도 관찰되었으며, 박막내의 산소결함이 제어되면서 청색 발광스펙트럼을 얻을 수 있었다.

광증폭기 응용을 위한 Er 첨가 실리카 유리 박막의 제조 (The fabrication of Er-doped silica film for optical amplifier)

  • 김재선;신동욱;정선태;송영휘
    • 한국재료학회지
    • /
    • 제11권5호
    • /
    • pp.385-392
    • /
    • 2001
  • 집적형 광증폭기는 대량생산이 용이하고. 단일 칩에 다기능의 광소자를 집적할 수 있다는 장점 때문에 활히 연구되어져 왔다. 본 연구에서는 수동형 집적광소자의 제작에 사용되는 화염가수분해증착법 (FHD)을 이용하여 실리콘 (Si) /실리카 ($SiO_2$) 광도파막을 제작하고, 이 박막에 Solution Doping 법을 이용하여 $Er^{3+}$ 를 첨가하여 광증폭 매질을 제작하는 연구를 수행하였다.

  • PDF

화학증착법에 의하여 제조된 탄화규소 코팅층의 기계적 특성 (Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer)

  • 이현근;김종호;김도경
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.492-497
    • /
    • 2006
  • SiC coating has been introduced as protective layer in TRISO nuclear fuel particle of High Temperature Gas cooled Reactor (HTGR) due to excellent mechanical stability at high temperature. In order to inhibit the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. ]n present work, thin silicon carbide coating was fabricated using chemical vapor deposition process with different microstructures and thicknesses. Processing condition and surface status of substrate.affect on the microstructure of SiC coating layer. Sphere indentation method on trilayer configuration was conducted to measure the fracture strength of the SiC film. The fracture strength of SiC film with different microstructure and thickness were characterized by trilayer strength measurement method nanoindentation technique was also used to characterize the elastic modulus and th ε hardness of the SiC film. Relationships between microstructure and mechanical properties of CVD SiC thin film were discussed.

Properties of IZTO Thin Films Deposited on PEN Substrates with Different Working Pressures

  • Park, Jong-Chan;Kang, Seong-Jun;Yoon, Yung-Sup
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.224-227
    • /
    • 2015
  • In this work, the properties of Indium-Zinc-Tin-Oxide (IZTO) thin films, deposited on polyethylene naphthalate (PEN) with a $SiO_2$ buffer layer, were analyzed with different working pressures. After depositing the $SiO_2$ buffer layer on PEN substrates by plasma-enhanced chemical vapor deposition (PECVD), the IZTO thin films were deposited by RF magnetron sputtering with 1 to 7-mTorr working pressure. All the IZTO thin films show an amorphous structure, regardless of the working pressure. The best morphological, electrical, and optical properties are obtained at 3-mTorr working pressure, with a surface roughness of 2.112-nm, a sheet resistance of $8.87-{\Omega}/sq$, and a transmittance at 550-nm of 88.44%. These results indicate that IZTO thin films deposited on PEN have outstanding electrical and optical properties, and the PEN plastic substrate is a suitable material for display devices.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

No Tilt Angle Dependence of Grain Boundary on Mechanical Strength of Chemically Deposited Graphene Film

  • Kim, Jong Hun;An, Sung Joo;Lee, Jong-Young;Ji, Eunji;Hone, James;Lee, Gwan-Hyoung
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.506-512
    • /
    • 2019
  • Although graphene has been successfully grown in large scale via chemical vapor deposition (CVD), it is still questionable whether the mechanical properties of CVD graphene are equivalent to those of exfoliated graphene. In addition, there has been an issue regarding how the tilt angle of the grain boundary (GB) affects the strength of graphene. We investigate the mechanical properties of CVD graphene with nanoindentation from atomic force microscopy and transmission electron microscopy. Surprisingly, the samples with GB angles of 10° and 26° yielded similar fracture stresses of ~ 80 and ~ 79 GPa, respectively. Even for samples with GB exhibiting a wider range, from 0° to 30°, only a slightly wider fracture stress range (~ 50 to ~ 90 GPa) was measured, regardless of tilt angle. The results are contrary to previous studies that have reported that GBs with a larger tilt angle yield stronger graphene film. Such a lack of angle dependence of GB can be attributed to irregular and well-stitched GB structures.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

Off-axis 고주파 마그네트론 스퍼터링법을 이용한 이종에피텍셜 ZnO 박막 성장 (Growth of Heteroepitaxial ZnO Thin Film by Off-axis RF Magnetron Sputtering)

  • 박재완;박종완;이전국
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.262-267
    • /
    • 2003
  • Off-axis 고주파 마그네트론 스퍼터링법으로 사파이어(0001) 기판 위에 이종에피텍셜 ZnO 박막을 제조하였다. ZnO 박막의 결정성은 증착압력, RF power 그리고 기판온도의 공정조건 변화에 많은 영향을 받았으며, 스퍼터링된 입자의 적당한 kinetic energy와 기판표면에서의 표면이동도(surface mobility)가 조화를 이룰 때 결정성이 우수한 이종에피텍셜 박막을 을 얻을 수 있었다. 이종에피텍셜 ZnO 박막의 Photoluminescence(PL) 특성 측정 결과, 저온(17K)에서 약 3.36 eV의 자외선 영역 발광을 관찰할 수 있었으며, 상온에서도 3.28 eV의 자외선 영역 발광을 관찰할 수 있었다. ZnO 박막을 산소 분위기에서 열처리함에 따라 결정성은 향상되는 반면 자외선 영역의 발광은 급격히 감소하는 경향을 보였다.