• 제목/요약/키워드: Ceramic deposition

검색결과 735건 처리시간 0.029초

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide

  • Wang, Yue;Kang, Kyung-Mun;Kim, Minjae;Park, Hyung-Ho
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.302-307
    • /
    • 2019
  • The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.

$Si_3N_4-TiC$ Ceramic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구 (A Study on the Chemically Vapor Deposited TiC, TiN, and TiC(C, N) on $Si_3N_4$-TiC Ceramic Tools.)

  • 김동원;김시범;이준근;천성순
    • Tribology and Lubricants
    • /
    • 제4권2호
    • /
    • pp.36-43
    • /
    • 1988
  • Titanium carbide(TiC) and titanium nitride(TiN) flims were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$ and $TiCl_4-H_2-N_2$ gas mixtures, respectively. The nonmetal to metal ratio of deposit increases with increasing $m_{C/Ti}$(mole ratio of CH$_4$ to TiCl$_4$ in the input) for TiC coatings and $m_{N/Ti}$(mole ratio of N$_2$ to TiCl$_4$ in the input) for TiN coatings. The nearly stoiahiometric films could be obtained under the deposition condition of $m_{C/Ti}$ between 1.15 and 1.61 for TiC, and that of $m_{N/Ti}$ between 25 and 28 for TiN. Also maximum microhardness of the coatings can be obtained in these ranges. The interfacial region of TiC coatings on $Si_3N_4$-TiC ceramics is wider than that of TiN coatings according to Auger depth profile analysis, which indicates good interfacial bonding for TiC. Experimental results show that TiC coatings have an randomly equiaxed structure and Columnar structure with(220) preferred orientation can be obtained for TiN coatings. And, multilayer coatings have a dense and equiaxed structure.

상압 플라즈마 용사의 공정조건에 따른 세라믹 피막의 특성 (Effect of Processing Conditions for Atmospheric Plasma Spraying on Characteristics of Ceramic Coatings)

  • 주원태;최병룡;홍상희
    • 한국표면공학회지
    • /
    • 제26권4호
    • /
    • pp.192-202
    • /
    • 1993
  • The characteristics of the high-performance ceramic coatings fabricated on the optimum processings con-ditions for the atmospheric plasma spraying are evaluated by various material tests and analyses. The opti-mum processing parameters for the plasma spraying are determined by using the two-level orthogonal arrays of fractional factorial testing method as a statistical approach. Material tests for the coating specimens are carried out to evaluate microstructure, hardness, adhesion strength, and deposition efficiency. The properties of Al2O3-13%TiO2 coating are discussed with regard to the effective processings parameters. The decarburization effects of WC-12%Co coating is examined by XRD analysis in terms of the arc power and the secondary gas species. The hardness of Al2O2-13%TiO2 coating is increased with the arc power and shows the maximum value at around 40 lpm of Ar gas flowrate, which appears to be the most critical parame-ter on the deposition efficiency. For reducing the decarburization of WC-12%Co coating, the injection of inert He gas instead of reactive H2 gas as a secondary gas is more effective than the dropping of arc power to lessen the plasma enthalpy.

  • PDF

전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성 (Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery)

  • 안준구;윤순길
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.593-598
    • /
    • 2004
  • 1 $\mu$m이하의 전고상 리튬 박막전지의 구현을 위해 펄스 레이저 증착법을 이용하여 Pt/TiO$_2$/SiO$_2$/Si 기판위에 LiCoO$_2$정극을 증착온도와 Li/Co 간의 몰 비율을 변화시켜가며 성장시켰다. 특히, Li/Co=1.2의 조성을 갖는 LiCoO$_2$를 50$0^{\circ}C$의 증착온도에서 성장시킬 경우 53 $\mu$Ah/$cm^2$-$\mu$m의 높은 초기 용량값을 가지며 100 싸이클 후에도 67.6%의 용량값을 유지하였다. LiCoO$_2$/Pt/TiO$_2$/SiO$_2$/Si위에 고체 전해질인 (Li, La)TiO$_3$를 비정질상으로 하여 PLD방법으로 낮은 온도대역에서 증착온도를 다양하게 하여 증착하였다. 10$0^{\circ}C$의 증착온도에서 LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si위에 성장시킨 (Li, La)TiO를 가지고 LiClO$_4$ in PC 안에서 Li anode와 충$.$방전 측정 결과 약 51$\mu$Ah/$cm^2$-$\mu$m의 초기 용량값을 나타내었으며 100싸이클 후에도 90%의 훌륭한 방전용량의 보존력을 나타내었다. 비정질상의 (Li, La)TiO$_3$ 고체 전해질은 전고상 박막전지로의 구현이 가능하다.

PECVD법에 의해 증착된 SiO2 후막의 광학적 성질 및 구조적 분석 (Optical Properties and Structural Analysis of SiO2 Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition)

  • 조성민;김용탁;서용곤;윤형도;임영민;윤대호
    • 한국세라믹학회지
    • /
    • 제39권5호
    • /
    • pp.479-483
    • /
    • 2002
  • 저온($320^{\circ}$C)에서 $SiH_4$$N_2O$ 가스의 혼합을 통해 플라즈마화학기상증착(PECVD)법을 이용하여 실리카 광도파로의 클래딩막으로 사용되는 $SiO_2$ 후막을 제조하였으며, 공정변수로는 $N_2O/SiH_4$ 유량비와 RF power에 변화를 주었다. 증착된 시편은 $N_2$ 분위기의 열처리로에서 $1050{\circ}$에서 2시간동안 열처리하였다. $N_2O/SiH_4$ 유량비가 증가함에 따라 증착속도는 $9.4~2.9{\mu}m /h$까지 감소하였으며, RF power가 증가함에 따라 증착속도는 $4.7~6.9{\mu}m /h$까지 증가하였다. 두께 및 굴절률은 Prism Coupler를 이용하여 분석하였다. 화학적 성질 및 구조적 성질은 X-ray Photoelectron Spectroscopy(XPS)와 Fourier Transform-Infrared Spectroscopy(FT-IR)를 이용하여 분석하였으며, Scanning Electron Microscopy(SEM)를 이용하여 시편의 단면을 관찰하였다.

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.

EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조 (Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition)

  • 이경섭;김영순;조철기;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조 (Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ)

  • 김형철;구명서;박종구;정화영;김주선;이해원;이종호
    • 한국세라믹학회지
    • /
    • 제43권2호
    • /
    • pp.85-91
    • /
    • 2006
  • Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.

후열처리 공정이 에어로졸 증착법에 의해 제조된 PMN-PZT 막의 미세구조와 전기적 특성에 미치는 영향 (Effect of Post-Annealing on the Microstructure and Electrical Properties of PMN-PZT Films Prepared by Aerosol Deposition Process)

  • 한병동;고관호;박동수;최종진;윤운하;박찬;김도연
    • 한국세라믹학회지
    • /
    • 제43권2호
    • /
    • pp.106-113
    • /
    • 2006
  • PMN-PZT films with thickness of $5\;{\mu}m$ were deposited on $Pt/Ti/SiO_2/Si$ substrate at room temperature using aerosol deposition process. The films showed fairly dense microstructure without any crack. XRD and TEM analysis revealed that the films consisted of randomly oriented nanocrystalline and amorphous phases. Post-annealing process was employed to induce crystallization and grain growth of the as-deposited films and to improve the electrical properties. The annealed film showed markedly improved electrical properties in comparison with as-deposited film. The film after annealing at $700^{\circ}C$ for 1h exhibited the best electrical properties. Dielectric constant $(\varepsilon_r)$, remanent polarization $(P_r)$ and piezoelectric constant $(d_{33})$ were 1050, $13\;{\mu}C/cm^2$ and 120 pC/N, respectively.

FHD법에 의한 $B_2O_3-P_2O_5-SiO_2$ 실리카막의 효과적인 $P_2O_5$ 도핑 (The Effective $P_2O_5$ Doping into $B_2O_3-P_2O_5-SiO_2$ Silica Layer Fabrication by Flame Hydrolysis Deposition)

  • 심재기;이윤학;성희경;최태구
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.364-370
    • /
    • 1998
  • 광집적회로용 평면도파로를 구현하기 위한 $B_2O_3-P_2O_5-SiO_2$ 실리카 광도파막을 실리콘 기판위에 FDH(Flame Hydrolysis Depositon)법으로 제조하여 미립자의 미세구조, 실리카막의 굴절률과 조성을 고찰하였다. FHD법에서 도펀트(dopant)물질로, $B_1\;P_1\;Ge$ 등의 산화물이 사용되며, $B_1$ Ge 산화물의 경우 $SiO_2$와의 결합특성이 우수하여 비교적 도핑(doping)이 용이하지만 P의 경우 $P_2O_5$의 낮은 융점에 의한 증발 등으로 효과적인 도핑이 어렵다. 수직형 FHD 토치를 사용하고 화염온도, 기판온도, 토치와 기판간의 거리를 최적화하여 P 농도가 3.3 Wt%이상이고 고밀화 온도가 $1180^{\circ}C$ 이하인 양질의 실리카막을 얻었다. 실리카막의 굴절률은 $1.55\;\mu\textrm{m}$ 파장에서 $1.4480{\pm}1{\times}10^{-1}$로 측정되었으며, $22{\pm}1\;\mu\textrm{m}$의 두께를 보였다.

  • PDF