• Title/Summary/Keyword: Ceramic deposition

Search Result 735, Processing Time 0.025 seconds

Role of Charge Produced by the Gas Activation in the CVD Diamond Process

  • Hwang, Nong-Moon;Park, Hwang-Kyoon;Suk Joong L. Kang
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Charged carbon clusters which are formed by the gas activation are suggested to be responsible for the formation of the metastable diamond film. The number of carbon atoms in the cluster that can reverse the stability between diamond and graphite by the capillary effect increases sensitively with increasing the surface energy ratio of graphite to diamond. The gas activation process produces charges such as electrons and ions, which are energetically the strong heterogeneous nucleation sites for the supersaturated carbon vapor, leading to the formation of the charged clusters. Once the carbon clusters are charged, the surface energy of diamond can be reduced by the electrical double layer while that of graphite cannot because diamond is dielectric and graphite is conducting. The unusual phenomena observed in the chemical vapor deposition diamond process can be successfully approached by the charged cluster model. These phenomena include the diamond deposition with the simultaneous graphite etching, which is known as the thermodynamic paradox and the preferential formation of diamond on the convex edge, which is against the well-established concept of the heterogeneous nucleation.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: III. Rietveld Refinement of $SnO_2$ Thin Film using X-ray Diffraction Data

  • Kim, Yong-Il;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 2000
  • The SnO$_2$film was deposited on a corning glass 1737 substrate by plasma enhanced chemical vapor deposition using a gas mixture of SnCl$_4$, $O_2$, and Ar. The film thickness was measured using $\alpha$-step and was about 9400$\AA$. The conventional X-ray diffractometry and pole figure attachment were used to refine the crystal structure of SnO$_2$ thin film. Six pole figures, (200), (211), (310), (301), (321), and (411), were measured with CoK$_\alpha$ radiation in reflection geometry. The X-ray diffraction data were measured at room temperature using CuK$_\alpha$ radiation with graphite monochromator. The agreement between calculated and observed patterns for the normal direction of SnO$_2$ thin film was not satisfactory due to the severely preferred orientation effect. The Rietveld refinement of heavily textured SnO$_2$ thin film was successfully achieved by adopting the pole density distribution of each reflection obtained from the inverse pole figure as a correction factor for the preferred orientation effect. The R-weighted pattern, R$_wp$, was 15.30%.

  • PDF

Pulsed DC Bias Effects on Substrate in TiNx Thin Film Deposition by Reactive RF Magnetron Sputtering at Room Temperature (반응성 RF 마그네트론 스퍼터링에 의한 TiNx 상온 성막에 있어서 기판 상의 펄스상 직류 바이어스 인가 효과)

  • Kim, Seiki
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.342-349
    • /
    • 2019
  • Titanium nitride(TiN) thin films have been deposited on PEN(Polyethylene naphthalate) substrate by reactive RF(13.56 MHz) magnetron sputtering in a 25% N2/Ar mixed gas atmosphere. The pulsed DC bias voltage of -50V on substrates was applied with a frequency of 350 kHz, and duty ratio of 40%(1.1 ㎲). The effects of pulsed DC substrate bias voltage on the crystallinity, color, electrical properties of TiNx films have been investigated using XRD, SEM, XPS and measurement of the electrical properties such as electrical conductivity, carrier concentration, mobility. The deposition rates of TiNx films was decreased with application of the pulsed DC substrate bias voltage. The TiNx films deposited without and with pulsed bias of -50V to substrate exhibits gray and gold colors, respectively. XPS depth profiling revealed that the introduction of the substrate bias voltage resulted in decreasing oxygen concentration in TiNx films, and increasing the electrical conductivities, carrier concentration, and mobility to about 10 times, 5 times, and 2 times degree, respectively.

Fabrication and Dielectric Properties of $(Sr_{1-x}Ca_x)TiO_3$ Ceramic Thin Films (($Sr_{1-x}Ca_x)TiO_3$ 세라믹 박막의 제조 및 유전특성)

  • Kim, J.S.;Cho, C.N.;Oh, Y.C.;Shin, C.G.;Kim, C.H.;Song, M.J.;So, B.M.;Choi, W.S.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1496-1498
    • /
    • 2003
  • The $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films were deposited on Pt-coated electrode (Pt/TiN/$SiO_2$/Si) using RF sputtering method according to the deposition condition. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[${\AA}/min$] at the optimum condition. The capacitance characteristics had a stable value within ${\pm}4[%]$. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films were observed above 200[kHz].

  • PDF

Preparation and Properties of $CuSb_2O_6$-doped $SnO_2$ Thin Films by Pulsed Laser Deposition (PLD법으로 제조된 $CuSb_2O_6-SnO_2$ 박막의 전기.광학적 특성)

  • Lee, Chae-Jong;Byun, Seung-Hyun;Lee, Hee-Young;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.262-263
    • /
    • 2007
  • Effect of co-doping on optical and electrical properties of $SnO_2$ based thin films were studied. $SnO_2$ ceramic targets with up to 50mol% $CuSb_2O_6$ were prepared by sintering mixed-oxide compact in the temperature range of $1100^{\circ}C{\sim}1300^{\circ}C$ in air. Thin films were then deposited onto glass substrates by pulsed laser deposition where substrate temperature was maintained in the range of $500{\sim}650^{\circ}C$ with oxygen pressure of 3m~7.5mTorr and energy density of $1Jcm^{-2}$. It was found that with the increase amount of dopant, the electrical properties of thin films tended to improve with the smallest resistivity value obtained at about 8mol% doping, further increase, however, usually impaired the optical transmission in the visible range.

  • PDF

Properties with Ca Substitutional Contents of ST Ceramic Thin Film (ST 세라믹 박막의 Ca 치환량에 따른 특성)

  • Oh, Y.C.;Kim, J.S.;Cho, C.N.;Shin, C.G.;Song, M.J.;Cho, W.S.;So, B.M.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.160-161
    • /
    • 2005
  • The $(Sr_{1-x}Ca_x)TiO_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/$SiO_2$/Si) using RF sputtering method with substitutional contents of Ca. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75$[{\AA}/min]$. The dielectric constant was increased with increasing the substitutional contents of Ca, while it was decreased if the substitutional contents of Ca exceeded over 15[mol%]. All SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency is observed above 200[kHz].

  • PDF

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho;Kim, Seung-Wook;Kim, Samjung;Kang, Eun-Young;Lee, Min Lyul;Samal, Sneha;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.488-495
    • /
    • 2021
  • Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF

Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process (상온 분사 공정에 의한 산화물전도 입자 복합 하이브리드 NTC 서미스터 필름의 제작 및 특성)

  • Kang, Ju-Eun;Ryu, Jungho;Choi, Jong-Jin;Yoon, Woon-Ha;Kim, Jong-Woo;Ahn, Cheol-Woo;Choi, Joon Hwan;Park, Dong-Soo;Kim, Yang-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Negative-temperature coefficient (NTC) thermistors based on nickel manganite spinel ($NiMn_2O_4$) are widely used for many applications, such as sensors and temperature compensators, due to their good thermistor characteristics and stabilities. However, to achieve thermistors with a high NTC B constant, which is an important figure of merit pertaining to the degree of temperature sensitivity, the activation energy should be high such that high resistivity at ambient temperatures results. To obtain a high B constant and low resistivity, Al and Si modified spinel structured $Ni_{0.6}Si_{0.2}Al_{0.6}Mn_{1.6}O_4$ hybrid thick films with the conducting metal oxide of $LaNiO_3$ were fabricated on a glass substrate by aerosol deposition at room temperature (RT). The NTC-$LaNiO_3$ hybrid thick films showed resistivity as low as < $100k{\Omega}\;cm$ at $90^{\circ}C$, which is one or two orders of magnitude lower than that of the monolithic NTC films, while retaining a high B constant of $NiMn_2O_4$ of over 5500 K when 20 wt% $LaNiO_3$ was added without a post-thermal treatment. These phenomena are explained by the percolation threshold mechanism.

Indentation of YSZ/Al2O3 Layered Systems Prepared by Nano-Coating (알루미나에 YSZ가 나노코팅된 층상형 시스템의 인덴테이션 특성평가)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Chul;Shin, Tae-Ho;Han, In-Sub;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • YSZ layer containing nano-sized particles has been deposited on the commercial A1203 substrate by Electron Beam Physical Vapor Deposition (EB-PVD). The role of coating rnjcrostructures of YSZ to indentation damage is studied. The different coating microsouctures are prepared by varying the substrate temperatures from $600^{circ}C$ to $800^{circ}C$ during the deposition. Microhardness test and Hertzian indentation are conducted on the $YSZ/Al_{2}O_{3}$ layered systems. The damage and flilure behaviors have been investigated according to the effect of microstructures and indentation loads. With increasing the substrate temperature during EB-PVD, the overall grain sizes are coarser and more faceted, which microsoucture ultimately influences on the indentation behavior, thus, YSZ/Al_{2}O_{3}$ layered system prepared at the substrate temperature of $800^{circ}C$ shows relatively higher damage tolerance.