• Title/Summary/Keyword: Ceramic ball

Search Result 273, Processing Time 0.024 seconds

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication (축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

Friction and Wear of Pressureless Sintered Ti(C,N)-WC Ceramics

  • Park, Dong-Soo;Yun, Shin-Sang;Han, Byoung-Dong;Kim, Hai-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.211-212
    • /
    • 2002
  • Friction and wear of pressureless sintered Ti(C,N)-WC ceramics were studied using a ball-on-reciprocating flat apparatus in open air. The silicon nitride ball and the cemented carbide (WC-Co) ball were used against the Ti(C,N)-WC plate samples. The friction coefficients of the Ti(C,N)-WC samples against the silicon nitride ball and the cemented carbide ball were about 0.57 and 0.3, respectively. The wear coefficient of the sample without WC addition was 5 times as large as that of the sample with 10 mole % WC addition when tested against the silicon nitride ball under 98 N. The higher wear coefficient of Ti(C,N)-0WC was explained in part by larger grain size. Wear occurred mainly by grain dislodgment after intergranular cracking mainly caused by the accumulated stress within the grains.

  • PDF

Determination of the Biaxial Strength by Ball-on-3-Ball Test (Ball-on-3-ball 시험에서 이축 강도의 결정)

  • 박성은;이중현;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 1999
  • Ball-on-3-ball 시험에서 이축 강도를 결정하기 위한 방법에 대해 고찰하였다. 알루미나 시편을 이용하여 ball-on-3-ball 시험과 poston-on-3-ball 시험을 하여 이축 강도를 측정하였다. piston-on-3-ball 시험에서의 강도 식과 등가 반지름을 이용하여 계산한 ball-on-3-ball 시험에서의 이축 강도와, piston-on-3-ball 시험에서의 이축 강도를 분산 분석(ANOVA)한 결과, 두 평균이 동일하다고 할 수 있었다. 따라서, ball-on-3-ball 시험에서의 이축 강도는 piston-on-3-ball 시험에서의 강도 식과 등가 반지름을 이용하여 계산할 수 있다. 또한, 유한 요소법을 이용하여 ball-on-3-ball 시험시 시편에 인가되는 응력 분포를 고찰해 보았다.

  • PDF

The Measurements of Ball Recovery Rate for the Cleaning Apparatus in Plate Heat Exchanger Using Ceramic Ball (세라믹 볼을 이용한 판형열교환기 세정장치의 볼 회수율 측정)

  • Chae, Hee-Man;Kwon, Jeong-Tae;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • The objectives of this study are to measure the ball recovery rate of cleaning apparatus for plate heat exchanger. Ceramic ball is used for plate heat exchanger cleaning. The main components of cleaning apparatus are comprised of ball collector, ball trap, ejector, pump and plate heat exchanger. The ball recovery rate are obtained with change in recovery time and velocity of water. The results show that the ball recovery rate is slightly increased with increase in the recovery time and the velocity of water over 0.4 m/s in the straight flow. In the case of reverse flow, the ball recovery rate more increased than straight flow. The maximum ball recovery rate of the straight flow and reverse flow reach 83.97% and 86.61%, respectively, when the velocity and cleaning time are 0.5 m/s and 15min.

Thermal shock behavior of alumina ceramics by ball-on-3 ball test (Ball-on-3 ball test에 의한 알루미나 세라믹스의 열충격 거동)

  • 이중현;박성은;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1062-1068
    • /
    • 1999
  • The flexural strength distribution of alumina ceramics was observed using ball-on-3 ball test after thermal shock into the distilled water of 25$^{\circ}C$ Crack distribution was also observed by dye-penetration after thermal shock test. Fracture probability of alumina ceramics by ball-on-3 ball test was studied and compared with that by 3-point bending test. The crack distance from the center of thespecimen showed the stronger effect on the flexural strength by ball-on-3 ball test than the crack density.

  • PDF

Effect of Fouling Mitigation for Ceramic Ball in Cooling Water System of Heat Exchanger (열교환장치의 냉각수 계통에서 세라믹 볼의 파울링 저감효과)

  • Suh, Sang-Ho;Sung, Sun-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.330-334
    • /
    • 2007
  • The objective of this study was to investigate the effecs of fouling mitigation for ceramic ball in cooling water system experimentally. The devices filled with ceramic balls were connected to the bypass line of the heat exchanging system. Cooling water in the heat exchanging system was artificial water. To visualize the formation of fouling on the heat transfer surface a number of images were obtained using a CCD camera with real-time microscopy. Fouling resistances and overall heat transfer coefficients were measured in order to analyze fouling mitigation effects. We found that the ceramic ball devices for artificial water reduced the formation of fouling compared to the no-mitigation devices.

Mechanical safety evaluation of ceramic ball head for total hip replacement using finite element method (인공고관절 전치환술에서 세라믹 볼 헤드의 기계적 안정성 평가를 위한 유한요소 해석)

  • Han, Sung-Min;Chu, Jun-Uk;Chun, Heoung-Jae;Kim, Jung-Sung;Choi, Kui-Won;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • A ceramic articulating system in total hip replacement thought to be superior to metal-on-polyethylene due to its extremely low coefficient of friction and potential for high resistance to wear. But ceramic is brittle, which makes it mechanically and theoretically susceptible to fracture under certain mechanical conditions. In the current study, nine different models of ceramic ball heads were mechanically evaluated using 3D finite element(FE) analyses. It was found that the maximum stress in all ceramic models was lower than ceramic flexural strength, and it satisfied the requirements of the FDA Gaudience for artificial hip implant. Thus, ceramic ball head models introduced in the current study could be mechanically safe for clinical applications.

Real-time Collection and Correlation of Viscosity and Acoustic Data During Ball Milling Process (볼밀 공정 중 점도와 음향 데이터의 실시간 수집 및 상관관계 분석)

  • Jeong, Hyeondeok;Kim, Young-Beom;Ryu, Sung-Soo;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.484-489
    • /
    • 2020
  • In this study, acoustic and viscosity data are collected in real time during the ball milling process and analyzed for correlation. After fast Fourier transformation (FFT) of the acoustic data, changes in the signals are observed as a function of the milling time. To analyze this quantitatively, the frequency band is divided into 1 kHz ranges to obtain an integral value. The integrated values in the 2-3 kHz range of the frequency band decrease linearly, confirming that they have a high correlation with changes in viscosity. The experiment is repeated four times to ensure the reproducibility of the data. The results of this study show that it is possible to estimate changes in slurry properties, such as viscosity and particle size, during the ball milling process using an acoustic signal.

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.