Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.6.484

Real-time Collection and Correlation of Viscosity and Acoustic Data During Ball Milling Process  

Jeong, Hyeondeok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Young-Beom (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Seiki (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.27, no.6, 2020 , pp. 484-489 More about this Journal
Abstract
In this study, acoustic and viscosity data are collected in real time during the ball milling process and analyzed for correlation. After fast Fourier transformation (FFT) of the acoustic data, changes in the signals are observed as a function of the milling time. To analyze this quantitatively, the frequency band is divided into 1 kHz ranges to obtain an integral value. The integrated values in the 2-3 kHz range of the frequency band decrease linearly, confirming that they have a high correlation with changes in viscosity. The experiment is repeated four times to ensure the reproducibility of the data. The results of this study show that it is possible to estimate changes in slurry properties, such as viscosity and particle size, during the ball milling process using an acoustic signal.
Keywords
Ball mill; Manufacturing innovation; Real-time data; Acoustic data;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Watanabe: Powder Technol., 104 (1999) 95.   DOI
2 E. O. Brigham and R. E. Morrow: IEEE Spectr., 4 (1967) 63.
3 H. Hassanin and K. Jiang: Int. J. Appl. Ceram. Technol., 10 (2013) 1014.   DOI
4 J. Yu, S. Yang, J. Kim, Y. Lee, K.-T. Lim, S. Kim, S.-S. Ryu and H. Jeong: Processes, 8 (2020) 10.
5 B. K. Mishra and R. K. Rajamani: Appl. Math. Model., 16 (1992) 598.   DOI
6 H. C. Li, W. M. Dong and X. P. Xie: Adv. Mater. Res., 634-638 (2013) 3732.   DOI
7 D. Boemer and J.-P. Ponthot: Comput. Part. Mech., 4 (2017) 53.   DOI
8 B. Behera, B. K. Mishra and C. V. R. Murty: Miner. Eng., 20 (2007) 84.   DOI
9 Z.-G. Su, P.-H. Wang, X.-J. Yu and Z.-Z. Lv: Miner. Eng., 21 (2008) 699.   DOI
10 P. Huang, M.-P. Jia and B.-l. Zhong: Miner. Eng., 22 (2009) 1200.   DOI
11 G. Si, H. Cao, Y. Zhang and L. Jia: Miner. Eng., 22 (2009) 1289.   DOI
12 J. Tang, L.-J. Zhao, J.-W. Zhou, H. Yue and T.-Y. Chai: Miner. Eng., 23 (2010) 720.   DOI
13 K.-S. Cho, S.-H. Kim and Y. H. Lee: J. Korean Ceram. Soc., 55 (2018) 275.   DOI
14 W. Guo, J. Q. Huang, Y. Lin, Q. F. Huang, B. J. Fei, J. Chen, W. C. Wang, F. Y. Wang, C. Y. Ma, X. Y. Yuan and Y. Cao: J. Eur. Ceram., 35 (2015) 3873.   DOI
15 P. Liu, M. Zhu, Z. Zhang and D. Zhang: J. Energy Resour. Technol., 141 (2019) 070709.   DOI
16 M. S. Lu, J. B. Li and W. H. Xiao: Biotechnol. Biofuels, 13 (2020) 77.   DOI