• 제목/요약/키워드: Ceramic Coating

검색결과 938건 처리시간 0.031초

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

실험계획법에 의한 알루미나 세라믹의 플라즈마 용사코팅 최적화 (Optimization of Plasma Spray Coating Parameters of Alumina Ceramic by Taguchi Experimental Method)

  • 이형근;김대훈;윤충섭
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.96-101
    • /
    • 2000
  • Sintered alumina ceramic substrate has been used for the insulating substrate for thick Hybrid IC owing to its cheapness and good insulating properties. Some of thick HIC's are important to eliminate the heat emitted from the parts that are mounted on the ceramic substrate. Sintered ceramic substrate can not transfer and emit the heat efficiently. It's been tried to do plasma spray coating of alumina ceramic on the metal substrates that have a good heat emission property. The most important properties to commercialize this ceramic coated metal substrate are surface roughness and deposition efficiency. In this study, plasma spray coating parameters are optimized to minimize the surface roughness and to maximize the deposition efficiency using Taguchi experimental method. By this optimization, the deposition efficiency was greatly improved from 35% at the frist time to 75% finally.

  • PDF

친환경적인 분말형 세라믹 페인트의 특성평가 (Characterization of Environment-Friendly Ceramic Coating Materials)

  • 이제철;신영훈;김태현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.521-526
    • /
    • 2002
  • In this paper, we described about the characteristic evaluation of environment-friendly ceramic paint with calcium-silicate mineral as a main binder. Particularly, we performed discharge of the environmental poisoning materials(e.g. VOCs, heavy metal, etc.), and properties of paint slurry and coating film of the ceramic paint. In the comparison of the ceramic paint with natural paint and mineral paint which were known as our environment-friendly paints, ceramic paint had good characteristics in the environmental safety and properies of wet slurry and dried coating film.

  • PDF

SiC가 코팅된 그라파이트 Foam의 제조 및 특성 분석 (Preparation and Characterization of SiC Coated Graphite Foam)

  • 경재진;김정주;김수룡;권우택;조광연;김영희
    • 한국세라믹학회지
    • /
    • 제44권11호
    • /
    • pp.622-626
    • /
    • 2007
  • Graphite is widely used in electronic industry due to its excellent electrical and thermal properties. However, graphite starts to oxidize around $400^{\circ}C$ that seriously degrades its properties. SiC coating can be applied to graphite foam to improve its high temperature oxidation resistance. In this research, SiC coating on graphite foam was made via preceramic polymer using a polyphenylcarbosilane. 20% of polyphenylcarbosilane in hexane solution was coated onto graphite by dip coating method. Thermal oxidation was carried out at $200^{\circ}C$ for crosslink of the preceramic polymer and the sample were pyrolysized at $800^{\circ}C{\sim}1200^{\circ}C$ under nitrogen to convert the preceramic polymer to SiC film. The microstructure of the SiC coating after pyrolysis was investigated using FESEM and oxidation resistance up to $800^{\circ}C$ was evaluated.

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

열차폐 코팅을 위한 지르코니아계 세라믹 소재의 기계적 특성 (Mechanical Properties of Zirconia-Based Ceramic Materials for Thermal Barrier Coating)

  • 정규익;김태우;백문규;이기성
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.498-503
    • /
    • 2006
  • A gas turbine blade with thermal barrier ceramic coating is operated at high temperature to increase engine efficiency. Recently, thermal barrier characteristics have been improved by advanced coating technology through microstructure control and increase of adhesion force of the coating layer. More advanced coating materials, rare earth zircon ate ceramics have been studied for replacing YSZ coatings as thermal barrier coatings. In this study, $La_2O_3,\;HfO_2,\;CeO_2,\;Gd_2O_3$ and pure or yttria stabilized zirconia were prepared. Microstructure analysis and the evaluation of mechanical properties such as Hertzian indentation and hardness test were performed.

세라믹 나노 안료의 동향 (Trend of Ceramic Nano Pigments)

  • 유리;김유진
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.256-268
    • /
    • 2019
  • Ceramic nano pigments have attracted much interest owing to recent demand for nontoxic, heavy metal-free pigments. In general, ceramic pigments must possess thermal stability at high temperature, however nanosized powder easily undergoes aggregation at high temperature, and its color turns. serveral groups have focused on to minimize agglomeration and oxidation, a core-shell structure with a silica coating is suggested. In this review, we introduce the reported the trend of nano-ceramic powders and we summarized method improve color and physical properties throuth morphology control and ceramic coating technology.

페놀수지 탄화 코팅법을 이용한 섬유강화 복합재료 계면 형성에 관한 연구 (Novel Phenol Resin Carbonizing Method for Carbon Interlayer Coating between Reinforcing Fiber and Matrix in Fiber Reinforced Ceramic Composite)

  • 김세영;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.301-305
    • /
    • 2009
  • The novel carbon coating process for interlayer of fiber reinforced ceramic composites between fiber and matrix was performed by carbonizing phenolic resin solution that coated on fiber surface in $N_2$ atmosphere at $600^{\circ}C$ to improve the strength and fracture toughness of CMC(ceramic matrix composite). 160 nm carbon layer was coated on fiber surface with 5 vol% of phenolic resin solution. Since the process temperature ($600^{\circ}C$) is lower than chemical vapor deposition($900{\sim}1000^{\circ}C$), the strength and toughness could be preserved. Furthermore the coating thickness uniformity was improved to 8% of deviation along the stacking sequence. Therefore, prevention from fiber degradation during coating process and controlling coating thickness uniformity along the preform depth were achieved by coating with phenolic resin carbonizing method.

Tundish Coating Powder의 염기성화에 관한 연구 (A Study on the Basic Tundish Coating Powder)

  • 정복환;김양훈;오양우;김성희
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.283-288
    • /
    • 1983
  • The properties of basic tundish coating powder were investigated comparing with acidic tundish coating powder especially in the corrosion resistance to the molten steel and the influence on non-metallic inclusion. The results show that the basic coating powder is superior to the acidic coating powder in corrosion resistance. It is appeared that the basic coating powder lining has less influence on the formation of non-metallic inclusions. These results will be promissing to reduce the coating thickness in tundish lining operation.

  • PDF

디젤엔진 배가스 처리를 위한 세라믹 필터 촉매코팅에 관한 연구 (A Study on catalyst-coated ceramic filter for diesel engine exhaust-gas treatment)

  • 최선희;구국희;정덕영;오광중
    • 청정기술
    • /
    • 제7권1호
    • /
    • pp.65-74
    • /
    • 2001
  • 본 연구는 디젤엔진에서 배출되는 NOx환원용 촉매로서 산화반응에서 우수한 활성을 나타내고 있는 페롭스카이트상의 $LaCoO_3$을 sol-gel 공정을 이용하여 촉매코팅용액을 제조한 후, 이를 기존의 dip-coating방법보다 코팅시간, 코팅량, NO-CO 산화 환원 반응에 있어서 경제적이고 효율적인 modified dip-coating방법을 이용하여 촉매코팅필터를 제조하고 이를 후처리장치에 부착함으로써 디젤엔진에서 배출되는 배가스를 효과적으로 제거시키고자 한다. 실험결과, modified dip-coating방법이 기존의 dip-coating방법에 비해서 코팅에 소요되는 용액량이 8.3배 코팅시간 83.3배 단축되었으며, 코팅량은 2~3배정도 커지고, NO-CO 산화 환원 반응성도 1.1~1.8배 가량 증가하였다. 그리고 코팅점도는 $0.006202kg{\cdot}m/sec$을 이용하여 코팅횟수 2회, 코팅량은 88.56mg/g에서 우수한 반응을 보였다. 또한 세라믹 필터의 셀수에 있어서는 200 CPSI가 적절함을 확인할 수 있다.

  • PDF