• Title/Summary/Keyword: Centrifugal

Search Result 1,669, Processing Time 0.02 seconds

Secondary flows through an impeller of centrifugal compressor at design and off-design conditions (설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동)

  • Choe, Yeong-Seok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor (익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

Influence on centrifugal force control in a self-driven oil purifier

  • Jung, Ho-Yun;Kwon, Sun-Beom;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1251-1256
    • /
    • 2014
  • The use of lubrication oil is of many purposes and one among them is to drive the engine mounted on a ship. Hence the supply of clean lubrication oil is important. And an oil purifier is one of key components in marine diesel engines. At present, the element type full-flow oil filter has been widely used for cleaning the engine oil. The self-driven centrifugal oil purifier is a device which is used to remove the impurities in lubrication oil using a jet flow. The flow characteristics and the physical behaviors of particles in this self-driven oil purifier were investigated numerically and the filtration efficiencies were evaluated. For calculations, a Computational Fluid Dynamics method is used and the Shear Stress Transport turbulence model has been adopted. The Multi Frames of Reference method is used to consider the rotating effect of the flows. The influence of centrifugal forcehas been numerically investigatedto improve filtration efficiency of tiny particles. As a result of this research, it was found that the particle filtration efficiency using the only center axis rotating and outer wall rotating system are higher than that of the fully rotating system in the self-driven oil purifier.

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting (분사주조한 Al기지 입자강화 복합재료의 마모특성)

  • Bae, Cha-Hurn;Choi, Hak-Kyu;Bang, Kuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System (생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성)

  • Jang, Choon-Man;Lee, Jong-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.

Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers (클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가)

  • Song, Seong-Young;Shin, Soon-Cheol;Kim, Gi-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

Estimation of Axial Displacement in High-speed Spindle Due to Rotational Speed (회전속도에 따른 고속 스핀들의 돌출량 예측에 관한 연구)

  • Bae, Gyu-Hyun;Lee, Chan-Hong;Hwang, Joo-Ho;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.671-679
    • /
    • 2012
  • This paper presents an estimation procedure for axial displacement in spindle equipped with angular contact ball bearings due to rotational speed. High-speed spindle-bearing system experiences axial displacement due to thermal expansion and rotational speed-dependent characteristics of angular contact ball bearings. This paper deals with the axial displacement caused by the rotational speed-dependent effects such as centrifugal force and gyroscopic moments. To this end, a bearing dynamic model is established that includes all the static and dynamic properties of angular contact ball bearing. An analytical formula to calculate the axial displacement based on contact angles between ball and races is derived to discuss the physics regarding the axial displacement in spindle. The proposed dynamic model is compared with a reference and a commercial program. Numerical examples are presented to show the effects of centrifugal force and gyroscopic moment on the axial displacement. The proposed model is also validated with an experimental result.