• Title/Summary/Keyword: Center thickness

Search Result 2,833, Processing Time 0.025 seconds

Experimental and numerical study on the failure of sandwich T-joints under pull-off loading

  • Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Shul, Chang-Won;Yang, Myung-Seog;Jun, Seung-Moon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • In this study, the failure mechanism of sandwich-to-laminate T-joints under pull-off loading was investigated by experiment and the finite element method. A total of 26 T-joint specimens were manufactured and tested in order to investigate the effects of both adhesive thickness (0.4, 2.0, and 4.0 mm) and environmental conditions on the failure of the joints. The results showed that failure occurred mainly as intralaminar failure in the first layer of the sandwich face, which was contacted to the paste adhesive. The failure load did not significantly change with increasing adhesive thickness in both RTD (Room Temperature and Dry) and ETW (Elevated Temperature and Wet) conditions. In the case of ETW conditions, however, the failure load increased slightly with an increase in adhesive thickness. The joints tested in ETW conditions had higher failure loads than those tested in RTD conditions. In addition to the experiment, a finite element analysis was also conducted to investigate the failure of the joint. The stress inside the first ply of the sandwich face was of interest because during the experiment, failure always occurred there. The analysis results showed good agreement with the trend of experimental results, except for the case of the smallest adhesive thickness. The highest stress was predicted in the regions where initial failure was observed in the experiment. The maximum stress was almost constant when the adhesive thickness was beyond 2 mm.

Dependence of LaAlO3/SrTiO3 Interfacial Conductivity on the Thickness of LaAlO3 Layer Investigated by Current-voltage Characteristics (LaAlO3 두께에 따른 LaAlO3/SrTiO3 계면에서의 전류-전압 특성을 이용한 전도성 변화 연구)

  • Moon, Seon-Young;Baek, Seung-Hyub;Kang, Chong-Yun;Choi, Ji-Won;Choi, Heon-Jin;Kim, Jin-Sang;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.616-619
    • /
    • 2012
  • Oxides possess several interesting properties, such as ferroelectricity, magnetism, superconductivity, and multiferroic behavior, which can effectively be used oxide electronics based on epitaxially grown heterostructures. The microscopic properties of oxide interfaces may have a strong impact on the electrical transport properties of these heterostructures. It was recently demonstrated that high electrical conductivity and mobility can be achieved in the system of an ultrathin $LaAlO_3$ film deposited on a $TiO_2$-terminated $SrTiO_3$ substrate, which was a remarkable result because the conducting layer was at the interface between two insulators. In this study, we observe that the current-voltage characteristics exhibit $LaAlO_3$ thickness dependence of electrical conductivity in $TiO_2$-terminated $SrTiO_3$. We find that the $LaAlO_3$ layers with a thickness of up 3 unit cells, result in highly insulating interfaces, whereas those with thickness of 4 unit cells and above result in conducting interfaces.

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Evaluation of Solder Printing Efficiency with the Variation of Stencil Aperture Size (스텐실 개구홀 크기 변화에 따른 솔더프린팅 인쇄효율 평가)

  • Kwon, Sang-Hyun;Kim, Jeong-Han;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2011
  • Main parameters of the screen printing were determined and the printing parameters were optimized for 0402, 0603, and 1005 chips in this study. The solder pastes used in this study were Sn-3.0Ag-0.5Cu and Sn-0.7Cu. The process parameters were stencil thickness, squeegee angle, printing speed, stencil separating speed and gap between stencil and PCB. The printing pressure was fixed at 2 $kgf/cm^2$. From ANOVA results, the stencil thickness and the squeegee angle were determined to be main parameters for the printing efficiency. The printing efficiency was optimized with varying two main parameters, the stencil thickness and the squeegee angle. The printing efficiency increased as the squeegee angle was lowered under 45o for all chips. For the 0402 and the 0603 chips, the printing efficiency increased as the stencil thickness decreased. On the other hand, for the 1005 chip, the printing efficiency increased as the stencil thickness increased.

Effect of Functional Latex Pillow on Muscle Thickness, Muscle Tonicity and Muscle Fatigue of Cervical Muscle in Patients with Chronic Cervical Pain (기능성 라텍스 베개가 만성 경부통 환자의 경부근의 근두께, 근긴장도 및 근피로도에 미치는 영향)

  • Lee, Jang-Tae;Chon, Seung-Chul
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.117-124
    • /
    • 2021
  • PURPOSE: This study examined the effect of muscle thickness of the deep cervical flexor muscle, muscle tonicity, and muscle fatigue of the superficial cervical flexor muscle by applying a functional latex pillow to patients with chronic cervical pain. METHODS: An experimental group using a functional latex pillow and a control group using a general pillow were assigned randomly to 30 people. Each pillow was applied in a comfortable lying position in the experimental group and control group. The deep cervical flexor muscle thickness was measured in the longus colli and longus capitus using ultrasonography. The muscle tonicity and muscle fatigue of the superficial cervical flexor muscle were measured separately in the sternocleidomastoid muscle using a myotonometer and electromyography. RESULTS: In the experimental group(functional latex pillow), the muscle tonicity of the superficial cervical flexor muscle like the sternocleidomastoid muscle was significantly lower than that of the control group (general pillow)(p < .01). CONCLUSION: This study suggests that the functional latex pillow may effectively reduce the muscle tonicity of the sternocleidomastoid muscle, which is the superficial cervical muscle, in patients with chronic cervical pain. On the other hand, it was not effective on the muscle thickness of the deep cervical flexor muscle and muscle fatigue of the superficial cervical flexor muscles.

Cortical thickness of the rostral anterior cingulate gyrus is associated with frailty in patients with end-stage renal disease undergoing hemodialysis in Korea: a cross-sectional study

  • Sang Hyun Jung;Jong Soo Oh;So-Young Lee;Hye Yun Jeong
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.4
    • /
    • pp.381-387
    • /
    • 2023
  • Background: Frailty is defined as a condition of being weak and delicate, and it represents a state of high vulnerability to adverse health outcomes. Recent studies have suggested that the cingulate gyrus is associated with frailty in the elderly population. However, few imaging studies have explored the relationship between frailty and the cingulate gyrus in patients with end-stage renal disease (ESRD) undergoing hemodialysis. Methods: Eighteen right-handed patients with ESRD undergoing hemodialysis were enrolled in the study. We used the FreeSurfer software package to estimate the cortical thickness of the regions of interest, including the rostral anterior, caudal anterior, isthmus, and posterior cingulate gyri. The Beck Depression Inventory, Beck Anxiety Inventory, and laboratory tests were also conducted. Results: The cortical thickness of the right rostral anterior cingulate gyrus (ACG) was significantly correlated with the Fried frailty index, age, and creatinine level. Multiple regression analysis indicated that the cortical thickness of the right rostral ACG was associated with frailty after controlling for age and creatinine level. Conclusion: Our results indicate that the cortical thickness of the rostral ACG may be associated with frailty in patients with ESRD on hemodialysis and that the rostral ACG may play a role in the frailty mechanism of this population.

Preparation of Hydrophobic Porous PVDF Membrane and Application for Membrane Distillation (소수성 다공질 PVDF 중공사 분리막 제조 및 막증류 적용)

  • Min, Ji Hee;Park, Min Soo;Kim, Jinho
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • Porous PVDF hollow fiber membranes were prepared by hybrid process of TIPS(thermally induced phase separation) and stretching for membrane distillation. The tests were conducted to investigate that permeability of the membrane could be enhanced by reducing membrane wall thickness. During fiber spinning, dope discharge rate from nozzle was reduced and flow rate of bore fluid increased to make the wall thickness thinner. As dope discharge rate from nozzle was reduced and flow rate of bore fluid increased, the membrane wall thickness was reduced. As a result, air permeability, water permeability and vapor permeability of the membranes increased.

Development of Friction Surface Modification System and Evaluation to the Effect of Process Parameter (마찰 표면개질 시스템 개발 및 공정인자의 영향 평가)

  • Chun, Chang-Keun;Chang, Woong-Seong;Noh, Joong-Suk;Joung, Tae-Whee;Joh, Joong-Seon
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • This paper describes the friction surface modification which has been successfully developed with the friction stir welding recently There are several problems including just position control and backlash in conventional friction surface modification system. Therefore it has been developed the friction surface modification system which has been controlled precisely both position and force by driving hydraulic cylinder in this paper. The mechtrode rotation speed(N) and feeding speed(Vz), travel speed(Vx,y) are of critical importance for the width and thickness of the coating in friction surfacing process. But there is no theoretical method of determining interrelations between process parameters affect the coating width and thickness. As a result of DOE(design of experiment) with developed system, the coating thickness and width seemed to decrease according to increase the mechtrode rotation speed(N) and traveling speed(Vx,y), to decrease feeding speed(Vz) apparently. However as the result of regression analysis the main effect was only the mechtrode rotation speed in the coating thickness.

Effect of Kind and Thickness of Seed Metal on the Surface Morphology of Copper Foil (Seed 금속의 종류와 두께에 따른 구리 전착층의 표면형상에 미치는 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.283-288
    • /
    • 2007
  • This study aimed to investigate the effects of the seed layer with copper electroplating on the surface morphology of copper foil. Three kinds of seed metal such as platinum, palladium, Pt-Pd alloy were used in this study. Electrodeposition was carried out with the constant current density of 200 $mA/cm^2$ for 68 seconds. Electrochemical experiments, in conjunction with SEM, XRD, AFM and four-point probe, were performed to characterize the morphology and mechanical characteristics of copper foil. Large particles were observed on the surface of the copper deposition layer when a copper foil was electroplated on the 130 nm thickness of Pd, Pt-Pd seed layer. However, a homogeneous surface, low resistivity was obtained when the 260 nm thickness of Pt, Pt-Pd alloy seed layer was used. The minimum value of resistivity was 2.216 ${\mu}{\Omega}-cm$ at the 260 nm thickness of Pt-Pd seed layer.

Experimental assessment of the effect of frozen fringe thickness on frost heave

  • Jin, Hyun Woo;Lee, Jangguen;Ryu, Byun Hyun;Shin, Yunsup;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.193-199
    • /
    • 2019
  • A frozen fringe plays a key role in frost heave development in soils. Previous studies have focused on the physical and mechanical properties of the frozen fringe, such as overall hydraulic conductivity, water content and pore pressure. It has been proposed that the thickness of the frozen fringe controls frost heave behavior, but this effect has not been thoroughly evaluated. This study used a temperature-controllable cell to investigate the impact of frozen fringe thickness on the characteristics of frost heave. A series of laboratory tests was performed with various temperature boundary conditions and specimen heights, revealing that: (1) the amount and rate of development of frost heave are dependent on the frozen fringe thickness; (2) the thicker the frozen fringe, the thinner the resulting ice lens; and (3) care must be taken when using the frost heave ratio to characterize frost heave and evaluate frost susceptibility because the frost heave ratio is not a normalized factor but a specimen height-dependent factor.