• 제목/요약/키워드: Center Position

검색결과 3,349건 처리시간 0.035초

능동 분할 오프셋 캐스터 기반 전방향 차량의 설계 및 제어 (Design and Control of the Active Split Offset Caster based Omni-directional Vehicle)

  • 김한결;;박종찬;권동수
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.75-81
    • /
    • 2013
  • This research would investigate deeply the operation of an omni-directional mobile robot that is able to move with high acceleration. For the high acceleration performance, the vehicle utilizes the structure of Active Split Offset Casters (ASOCs). This paper is mainly focused on inverse kinematics of the structure, hardware design to secure durability and preserve the wheels' contact to the ground during high acceleration, and localization for the real time position control.

PLC에 의한 8축 동기제어의 구현 (A Study on 8- Axis Servo Sync Control method and Implementation Using PLC Position Control Module)

  • 김석우;김준식;유종선;이영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.880-882
    • /
    • 1995
  • The systematic function of the PLC (Programmable - Logic Controller) has been enhanced immensely due to the various special modules that consist of the conventional I/O control contants plus special function, which enables the flexible application to highly advanced systems. Position control module is one of the various PLC special module. In this paper, we proposed new synchronized operating method and implemented 8 - axis servo control system. The validity of proposed method is verified througth experimental results and it will be possible to expand 32 - axis servo control system by RS - 485 communication spec.

  • PDF

Compensative Microstepping Based Position Control with Passive Nonlinear Adaptive Observer for Permanent Magnet Stepper Motors

  • Kim, Wonhee;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1991-2000
    • /
    • 2017
  • This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle.

Optimization of Radiator Position in an Internally Radiating Photobioreactor: A Model Simulation Study

  • Suh, In-Soo;Lee, Sun-bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.789-793
    • /
    • 2003
  • This study focused on the optimization of the illumination method for efficient use of light energies in a photobioreactor. In order to investigate the effect of radiator position, a model simulation study was carried out using Synechococcus sp. PCC 6301 and an internally radiating photobioreactor as a model system. The efficiency of light transfer in a photobioreactor was analyzed by estimating the average light intensity in a photobioreactor. The simulation result, indicate that there exists an optimal position of internal radiators, and that the optimal position varies with radiator number and cell concentration. When light radiators are placed at the optimal position, the average light intensity is about 30% higher than that obtained by placing radiators at the circumstance or center of a photobioreactor. The method presented in this work may be useful for improving light transfer efficiency in a photobioreactor.

새로운 회전자검출 방법에 의한 8/6 스위치드 리럭턴스 모터 속도 제어 (Speed Control of 8/6 Switched Reluctance Motor Using New Rotor Position Detection Techniques)

  • 정도영;박영록
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.333-337
    • /
    • 2003
  • This paper proposed new techniques of rotor position detection for 8/6 pole Switched Reluctance Motor(SRM). This technique is very simple and easy to find out rotor position. The main idea uses the impulse responses which have different values between aligned and unaligned rotor position. In order to obtain the informations of the rotor position, the impulse applied to the unenergized phases and their responses are analyzed to control the speed of SRM without shaft sensor. Experimental results verify the feasibility of the proposed method.

  • PDF

선회류가 있는 연소실의 연소에 미치는 점화위치의 영향 (The effect of ignition position on combustion in the chamber with swirl flow)

  • 이종태
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.42-53
    • /
    • 1988
  • The effects of ignition position on combustion in a chamber with swirl flow were investigated by use of hot wire anemometer, high speed schlieren photography, and chamber pressure measurement. In experiments, the closed-constant volume combustion chamber was used, and the swirl was formed unsteadily by suction of external fluid after reducing pressure in the chamber. Results show that the effect of ignition position on combustion depends on the flow state and the flame propagation distance corresponding to each ignition position. Also, the effect of combustion promoting increases as an ignition position moves from the center of chamber to the outside, but maximum burning pressure was obtained at the position that is the shortest flame propagation distance.

  • PDF

Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor

  • Park, Joon Sung;Choi, Jun-Hyuk;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.889-897
    • /
    • 2016
  • This paper presents an improved approach for compensating rotor position signal displacement in brushless DC (BLDC) motors with misaligned hall-effect sensors. Typically, the hall-effect sensors in BLDC motors are located in each phase and positioned exactly 120 electrical degrees apart. However, limitations in mechanical tolerances make it difficult to place hall-effect sensors at the correct location. In this paper, a position error compensator to counteract the hall-effect sensor positioning error is proposed. The proposed position error compensator uses least squares error analysis to adjust the relative position error and back-EMF information to reduce the absolute offset error. The effectiveness of the proposed approach is verified through several experiments.

4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어 (Body Impedance Control for Walking Stabilization of a Quadrupedal Robot)

  • 이수영;홍예선
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

QUADRUPLY-IMAGED QUASARS: SOME GENERAL FEATURES

  • Tuan-Anh, P.;Thai, T.T.;Tuan, N.A.;Darriulat, P.;Diep, P.N.;Hoai, D.T.;Ngoc, N.B.;Nhung, P.T.;Phuong, N.T.
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.149-159
    • /
    • 2020
  • Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars observed by the Hubble Space Telescope. Strong correlations between the parameters defining the image configuration are revealed. The relation between the image configuration and the source position is studied. Some simple features of the selected data sample are exposed and commented upon. In particular, evidence is found for the selected sample to be biased in favor of large magnification systems. While having no direct impact on practical analyses of specific systems, our results have pedagogical value and deepen our understanding of the mechanism of gravitational lensing.

Sonoanatomic Variation of Pes Anserine Bursa

  • Imani, Farnad;Rahimzadeh, Poupak;Gharehdag, Farid Abolhasan;Faiz, Seyed Hamid Reza
    • The Korean Journal of Pain
    • /
    • 제26권3호
    • /
    • pp.249-254
    • /
    • 2013
  • Background: The pes anserine bursa lies beneath the pes anserine tendon, which is the insertional tendon of the sartorius, gracilis, and semitendinosus muscles on the medial side of the tibia, but it can lie in different sites in the medial knee. Accurate diagnosis of the position of the bursa is critical for diagnostic and therapeutic goals. The aim of this study was to evaluate sonoanatomic variations of the pes anserine bursa in the medial knee. Methods: One hundred seventy asymptomatic volunteers were enrolled in this study. Using ultrasound imaging (transverse approach, 7-13 MHz linear array probe) the sonoanatomic position of the pes anserine bursa and its relation to the pes anserine tendon were evaluated. Additionally, we evaluated the sonoanatomic variation of the saphenous nerve. Results: The position of the pes anserine bursa was between the medial collateral ligament and the pes anserine tendons in 21.2%/18.8% (males/females) of subjects; between the pes anserine tendons and the tibia in 67.1%/64.7% (m/f); and among the pes anserine tendons in 8.2%/12.9% (m/f). No significant differences in the position of the bursa existed between males and females. The saphenous nerve was found within the pes anserine tendons in 77.6%/74.1% (m/f) of subjects, but outside the pes anserine tendons in 18.8%/15.3% (m/f). Visibility of sonoanatomic structures was not related to either gender or BMI. Conclusions: Ultrasound provides very accurate information about variations in the pes anserine bursa and the saphenous nerve. This suggests that our proposed ultrasound method can be a reliable guide to facilitate approaches to the medial knee for diagnostic and therapeutic objectives.