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Abstract – This paper presents a compensative microstepping based position control with passive 
nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a 
position error exists in the steady-state, and a ripple of position error appears during operation. The 
compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees 
the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase 
resistances and the velocity. The closed-loop stability is proven using input to state stability. 
Simulation results show that the position error in the steady-state is removed by the proposed method 
if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the 
Lissajou curve of the phase currents is a circle. 
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1. Introduction 
 
Microstepping has been widely used for improved 

resolution and significantly increased motion stability for 
position control of permanent magnet (PM) stepper motor 
[1-3]. Microstepping largely eliminates the jerks that appear 
with full or half-stepping, and prevents speed reversal [2]. 
However, in microstepping without feedback control (open-
loop microstepping), the phase currents are decreased 
and experience phase lag due to back-emfs and phase 
inductances during operation. Therefore, proportional and 
integral (PI) current feedback is widely used to compensate 
the phase currents in industrial applications [3-6]. If the 
bandwidth of the designed PI current feedback loop is 
much greater than the maximum velocity, the effect of 
the back-emf may be negligible. However, poor transient 
performance exists in the position control.  

Position feedback by resolvers or encoders built into 
PM stepper motors was previously used to improve micro-
stepping in industrial applications [7, 8]. Various feedback 
control methods have been implemented to improve the 
performance of the position control of microstepping [9-
13]. Recently, several advanced microstepping methods 
were developed to improve the position tracking perfor-
mance of the microstepping [14, 15]. In previous researches 
[9-17], it was assumed that the resistances of phases A and 
B had the same value. However, the phase resistances may 

be unknown due to mechanical errors so that the phase 
resistances are different [18]. The tolerance of the resistance 
in industry is generally ±10% [18]. The phase resistance 
may vary during operation [19]. In [19], the adaptive 
algorithm to estimate the resistance was proposed. However, 
the adaptive algorithm can estimate only resistance without 
the angular velocity. Thus it requires the velocity sensor. 
Furthermore, it was also assumed that both resistance of 
phase A and B are same. When the phase resistances of 
phases A and B are different, both ripple and offset error in 
the position cannot be compensated for by current control 
method based on conventional microstepping, i.e., PI 
controller or nonlinear controller. Thus, the control method 
to solve the problem should be developed. And the 
estimation method is required to estimate the different 
phase resistances and the velocity. Several adaptive 
observers were proposed [20], but there was no one to 
estimate the velocity, and phase A and B resistances for the 
PM stepper motor. 

In this paper, a compensative microstepping based 
position control with passive nonlinear adaptive observer is 
proposed for position tracking in PM stepper motor when 
the phase resistances are different. Lissajous curve is the 
graph of a system of parametric equations which describe 
complex harmonic motion. If the phase resistances are 
different, the Lissajou curve of the desired phase currents 
used in the previous methods [11, 12] becomes an ellipse. 
Therefore, a position error exists in the steady-state, and 
ripple of position errors appear during operation. To 
resolve this problem, a compensative microstepping is 
designed to make the Lissajou curve of the desired phase 
currents become a circle. To ensure that the phase currents 
follow the desired paths during operation, the nonlinear 
control is used [11, 12]. The integral action is used to 
eliminate steady-state errors due to dc offsets in the current 
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measurement. A passive nonlinear adaptive observer is also 
designed to estimate the phase resistances and the velocity. 
To the best of the authors’ knowledge, it might be the 
first attempt of the design of the adaptive observed to 
estimate the velocity, and phase A and B resistances for the 
PM stepper motor. The closed-loop stability is proven 
using input to state stability. Simulation results show that 
the steady-state position error disappears and the ripple 
is reduced through the use of the proposed method. 
Furthermore, the proposed method returns Lissajou curve 
of the phase currents to a circle under the different phase 
resistances.  

 
 

2. Mathematical Model of PM Stepper Motor and 
Compensative Mocristepping 

 
2.1. Mathematical model of PM stepper motor 

 
A PM stepper motor consists of a slotted stator with two 

phases and a permanent magnet rotor which has north and 
south poles. Detailed description of the operation of PM 
stepper motor is presented in [21, 22]. The dynamics of PM 
stepper motor can be represented in the state-space form 

 ,x f x u  as follows [21-23]: 
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where x = [θ,ω,ia,ib]

T is a vector of state variables and u = 
[va,vb]

T is a vector of inputs. va, vb and ia, ib are the voltages 
[V] and currents [A] of phases A and B, respectively. θ is 
the rotor (angular) position [rad], ω is the rotor (angular) 
velocity [rad/s], B is the viscous friction coefficient 
[N·m·s/rad], J is the inertia of the motor [Kg·m2], Km is the 
motor torque constant [N·m/A], R is the resistance of the 
phase winding [Ω], L is the inductance of the phase 
winding [H], and Nr is the number of rotor teeth.Vsis the 
supplied voltage of PM stepper motor. The parameters of 
PM stepper motor are shown in Table 1 [24]. The position 
and phase currents are measurable. 

 
2.2. Compensative microstepping 

 
In [12], the stability of microstepping was proven using 

Lyapunov method. 
Theorem 1: Consider the PM stepper motor (1). 

Suppose that the microstepping inputs d
av  and d

bv  are 
given to PM stepper motor (1) as 

 

  max cosd d
a rv V N  ,  max sind d

b rv V N    (2) 

 
where θd is the constant desired position and Vmax is the 
amplitude of the input voltage. Then the state x of the PM 
stepper motor (1) locally converges to an equilibrium 
point ,0, ,

Td d d
e a bx i i     , that is, 
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where  

 

 ,
d d

d da a
a b

v v
i i

R R
    (4) 

 
are the desired currents for microstepping.  ♦ 

In general, it is assumed that the resistances in phase A 
and B, Ra and Rb, are equal to R, which allows the desired 
current vector to form a circle, as shown in Fig. 1.  

 

 

Fig. 1. Lissajou curves of phase currents of the two cases 
 

 

Fig. 2. Reference position 

Table 1. Stepper motor parameters 

Parameter Value Parameter Value 
L 0.040 Vs 24 
Ra 14.06 Rb 15.54 
J 3×10-5 Km 0.165 
Nr 50 B 8×10-4 
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However, Ra and Rb are actually different, causing the 
phase currents to be plotted as an ellipse, as shown in Fig. 
1. Therefore, the position error appears as 
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  (5) 

 
In Fig. 1, the magnitude of the position error varies 

with the electrical degree of the desired position. This 
position tracking error produces a ripple during operation. 
Therefore, we propose the compensative microstepping 
such as  
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cos , sin .d d d da b
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Then both desired currents becomes 
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Remark 1: Although (2) is changed into (6) in 

microstepping, the stability of microstepping holds since 
only the amplitude of the (2), Vmax is changed into 

max2 a

a b

R V

R R
 and max2 b

a b

R V

R R
.  ♦ 

When Ra = 13.32 Ω (−10%), Rb = 16.28 Ω (+10%), and 
Vmax=24 V, two types of open-loop microsteppings (normal 
microstepping (2) and compensative micro-stepping (6)) 
are compared by tracking the reference position shown in 
Fig. 2. The parameters in Table 1 are used for the 
simulations. Fig. 3 shows that the position steady-state 
position error appeared due to the different phase resistances. 
Furthermore, the ellipse Lissajou curves resulted in the 
increasing position ripple. The steady-state position error 
was not observed using (6), as shown in Fig. 3; however, 
since the current dynamics are affected by the different 
phase resistances, the ripple is reduced during operation 
when using open-loop compensative microstepping. 

 
 

3. Controller and Observer Designs 
 

3.1. Nonlinear controller 
 
Using the compensative desired phase voltages (6) and 

currents (7), the current error and the integral of the current 
error are defined as 
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Note that a dc current offset may appear in current 

measurements. The integral action is used to eliminate 
steady-state errors due to dc offsets in the current 
measurement. The phase voltage inputs are designed as 
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where Ia , a , Ib , and b  are control gains. The 
control gains are chosen such that are chosen such that 
the polynomials 

2

Ia as s    and 
2

Ib bs s    are 
Hurwitz. 

 
Theorem 2: Consider PM stepper motor (1). The control 

inputs (9) guarantee that Iae
ae , Ibe , and be  exponentially 

converge to zero as t → ∞.  ♦ 
 
Proof: Consider a Lyapunov candidate function V1 as 
 

 2 2 2 2
1

1 1 1 1
.

2 2 2 2I Ia a b bV e e e e      (10) 

 
Differentiating V1 with respect to time yields 

 
(a) Position tracking error 

 
(b) Zoom of the position tracking error 

Fig. 3. Tracking errors of two microstepping: micro-
stepping and compensative microstepping 
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With the control law (9), 1V  is negative definite as 
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Since Ae is Hurwitz, ea and eb exponentially converge to 

zero as t → ∞.  ■ 
Notice that the Lyapunov-based control law (9) only 

guarantees local exponential stabilities of the desired 
currents d

ai  and d
bi  required for microstepping/ 

 
3.2. Passive nonlinear adaptive observer design  

 
The phase resistances may be unknown due to 

mechanical errors [18]; furthermore, the phase resistance 
may vary during operation [19]. Thus, the resistances of 
phases A and B are not the same, and Ra and Rb need to be 
estimated. The Lyapunov-based controller (9) design 
assumed that the full state was known. However, we are 
unable to determine a velocity based on the simple 
backward Euler method, ω(kT ) = [θ(kT )−θ(k−1)T ]/T due 
to the resolution limit when the PM stepper motor operates 
at a low velocity. Therefore, an adaptive observer to 
estimate ω, Ra, and Rb is designed. The PM stepper motor 
dynamics (1) can be rewritten as 
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As a result, a nonlinear observer is designed by 
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a bx i i      is estimated x, ˆ
aR  and ˆ

bR  as 
estimated Ra and Rb, and '

il  s is observer gain, respectively. 
 
Remark 2: Note that adding  ˆobL C x x  to   ˆA x  

results in making system matrix,     obA A L C    , 
become skew symmetric. Thus the nonlinear observer 
dynamics can become passive system with the observer 
gain, lθ > 0, lω = L/J, la > 0, lb > 0.  ♦ 

Lob should be designed so that  A   is Hurwitz. If lθ 
> 0, lω=L/J, la > 0, lb > 0, then  A   is Hurwitz, 
regardless of θ. The estimation states error, ˆx x x  , 
and the estimation resistance errors, ˆ

a a aR R R  , 
ˆ

b b bR R R  , are defined. Theorem 3 shows that x , aR , 
and bR  converge to 0. 

Theorem 3: Consider the error dynamics as 
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If the adaptive laws are designed as 
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and the persistently exciting conditions (PEs) as 
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for all t ≥ 0, some finite Taand Tbare satisfied, then x  → 
0, aR  → 0, and bR  → 0 as t → ∞.  ♦ 
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Proof: The Lyapunov candidate function V2 is defined as 
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The derivative of V2 is given as 
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Since V2(t)∈L2  and V2(0) are finite, x ∈ L2. From 

(15), x ∈L∞. Therefore, x → 0 based on Barbalat’s 
lemma [27]. Also from (15), x  is uniformly continuous. 
By Barbalat’s lemma [27], we also conclude that x→0. 
Thus, if the PEs (18),(19) are satisfied, then aR → 0 and 

bR → 0.  ■ 
 
As long as PM stepper motor keeps rotating, the PEs 

(18), (19) are always satisfied. Then, the zero equilibrium 
point of the error dynamics (15) are uniformly asymptoti-
cally stable. 

4. Closed-loop System Stability Analysis 
 
Since ω, Ra, and Rb are unknown, the desired phase 

currents (7) and the desired current errors (8) should be 
modified respectively such as 

 

    max max2 2ˆ ˆcos , sin
ˆ ˆ ˆ ˆ

d d d d
a r b r

a b a b

V V
i N i N

R R R R
  

 
  (24) 

 
and  
 

 
       

       
0

0

ˆˆ ˆ ˆ,

ˆˆ ˆ ˆ, .

I

I

t d
a a a a a

t d
b b b b b

e t e d e t i t i

e t e d e t i t i

 

 

  

  




  (25) 

 
Therefore, the control law (9) needs to be modified to 

cancel the additional terms, ˆ
a aR i
  and ˆ

b bR i
  as 

 

    
    
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   
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

   (26) 

 
Due to the estimated errors (25) and the modified control 

law (26), the estimated error dynamics are given by 
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1
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  (27) 

 
From (15), (16), (17), and (27), we obtain the closed-

loop system as 
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ˆ
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a
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Theorem 4: Consider the closed-loop system (28). If 
PEs (18), (19) are satisfied, then ˆae , b̂e , x , aR  and bR  
approach zero as t → ∞. Thus, Iae , ae , Ibe , and be  go to 
zero as t → ∞.  ♦ 

Proof: The closed-loop system (28) can be rewritten as 
 

 
 

 
1 1

2

1 1 2

2 2

A B x

A x

 


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


  (29) 

 
where 1 ˆ ˆ ˆ ˆ, , ,

I I

T
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 sin rS N   and  cos rC N  , respectively. Note 

that 1
A is Hurwitz and  

1
B x  is uniformly bounded. 

Therefore, the dynamics of 1  is input to state stable [25]. 
In Section 3, it was shown that 2  goes to zero as t → ∞ 
if PEs (18), (19) are satisfied. Therefore 1  goes to zero 
as t → ∞. ea and eb are 
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d
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d
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  (30) 

 

where 
 

    max2
cos

ˆ ˆ
a bd d

a r

a b a b

V R R
i N

R R R R



 

 

 
  and  

 
    max2

sin
ˆ ˆ

a bd d
b r

a b a b

V R R
i N

R R R R



 

 

 
 . Since ˆae , b̂e , x , 

aR , and bR  approach zero as t → ∞, Iae , ae , Ibe , and 

be  go to zero.  
Fig. 4 shows the block diagram of the controller structure. 

The adaptive observer estimates the velocity and the phase 
resistances. Then, the compensative microstepping generates 
the desired currents using the estimated resistances. Finally, 
the Lyapunov based controller makes the actual control 
inputs. 

 
 

5. Simulation Results 
 
Simulations were performed to evaluate the performance 

of the proposed controller. The PM stepper motor model 
consisting of SimScape models was used. For the 
implementation of the proposed method, the S-function 
coded in C language was used. The measurement noises in 
the current sensor had 0.05 A of the maximum ranges. The 
dc offset in the current sensor was 0.01 A. The parameters 
in Table I and the reference position shown in Fig. 2 were 
used. The control parameters are listed in Table II. For the 
validation of the proposed method, simulations for two 
cases were used: 

[Case 1] the microstepping based nonlinear control [12] 
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  (31) 

 
and [Case 2] the compensative microstepping based control 
with the passive nonlinear adaptive observer 
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Fig. 4. Block diagram of the controller structure 
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 (32) 

 
In case 1, the controller based on previous microstepping 

[12] is used. The nominal resistance R was used to make 
the Lissajou curve of the desired current become circle 
instead of the actual phase resistance, Ra and Rb. In case 2, 
the proposed controller based on compensative micro-
stepping with passive nonlinear adaptive observer is used. 

 
5.1. Comparison of the microstepping and the com-

pensative microstepping 
 
Fig. 5 shows the position tracking errors of both cases. 

The high frequency components of the position ripples 
were unavoidable due to the PWM drivers and the current 
measurement noise. As the simulation results shown in 
Fig. 3(a), the proposed method using the compensative 
microstepping can reduce the position ripple. The steady-
state position error was unobservable due to the position 
ripple increased due to PWM drivers and the current 
measurement noise. The Lissajou curves of the phase 
currents of both methods are shown in Fig. 6. The Lissajou 
curves of the phase currents for both cases and the desired 
currents are shown in Fig. 6. The Lissajou curve of the 
phase of case 1 seems to be nearly circles as shown in Fig. 
6. Note that the Lissajou curve of the phase currents of 
the case 1 was slightly ellipse due to the asymmetric 
measurement noises in the phase A and B However, the 
Lissajou curve of the phase currents of the case 1 was 
ellipse as shown in Figs. 6. Thus the position error in the 

steady-state and the ripple were observed in the case 1. On 
the other hand, the Lissajou curve of the phase currents of 
the case 2 was nearly circle as shown in Fig. 6 so that the 
position ripple can be reduced. 

 
5.2. Evaluation of the proposed nonlinear adaptive 

observer and controller 
 
Figs. 7 and 8 show the estimation results of the velocity 

and the phase resistances in case 2. ̂ , ˆ
aR , and ˆ

bR  
tracked the real values ω, Ra, and Rb. However, since PE 

 
(a) Case 1 

 
(b) Case 2 

Fig. 5. Position tracking errors of cases 1 and 2 

 
Fig. 6. Lissajou curve of the phase currents of the both 

methods 

 
Fig. 7. Estimation of the velocity of case 2 

 

 
(a) ˆ

aR  with  ˆ 0 0aR    

 
(b) ˆ

bR  with  ˆ 0 0bR    

Fig. 8. Estimations of the phase resistances of case 2 
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(19) was not satisfied at the outset (0 ≤ t < 0.2s), i.e., 
before rotation of PM stepper motor, ˆ

bR  does not 
converge to Rb. The current tracking performances are 
shown in Fig. 9. The amplitudes of the phase currents of 
the controller with the compensative microstepping were 
not decreased and did not have the phase lag by the 
proposed controller. 

 
 

6. Conclusions 
 
In this paper, nonlinear adaptive control with 

compensative microstepping was proposed. The desired 
voltage inputs of microstepping were modified to enforce 
the Lissajou of the desired phase currents to form a circle 
when the resistances in phases A and B were different. To 
allow the phase currents to follow the desired phase 
currents during operation, the Lyapunov-based controller 
was modified. An adaptive observer was designed to 
estimate the velocity and phase resistances. The stability of 
the closed-loop was proven using passivity. Simulation 
results showed that the steady-state position error 
disappeared when using the proposed method. The position 
ripple was also reduced during operation through the use of 
the proposed method. Furthermore, the resulting Lissajou 
curve of the phase currents was a circle. 
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