• Title/Summary/Keyword: Censored survival data

Search Result 97, Processing Time 0.076 seconds

Bezier curve smoothing of cumulative hazard function estimators

  • Cha, Yongseb;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.189-201
    • /
    • 2016
  • In survival analysis, the Nelson-Aalen estimator and Peterson estimator are often used to estimate a cumulative hazard function in randomly right censored data. In this paper, we suggested the smoothing version of the cumulative hazard function estimators using a Bezier curve. We compare them with the existing estimators including a kernel smooth version of the Nelson-Aalen estimator and the Peterson estimator in the sense of mean integrated square error to show through numerical studies that the proposed estimators are better than existing ones. Further, we applied our method to the Cox regression where covariates are used as predictors and suggested a survival function estimation at a given covariate.

A modified partial least squares regression for the analysis of gene expression data with survival information

  • Lee, So-Yoon;Huh, Myung-Hoe;Park, Mira
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1151-1160
    • /
    • 2014
  • In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.

A Simple Estimator of Mean Residual Life Function under Random Censoring

  • Jeong, Dong-Myung;Song, Myung-Unn;Song, Jae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.225-230
    • /
    • 1997
  • We, in this paper, propose an estimator of mean residual life function by using the residual survival function under random censoring and prove the uniform consistency and weak convergence result of this estimator. Also an example is illustrated by the real data.

  • PDF

A Comparative Study of Microarray Data with Survival Times Based on Several Missing Mechanism

  • Kim Jee-Yun;Hwang Jin-Soo;Kim Seong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • One of the most widely used method of handling missingness in microarray data is the kNN(k Nearest Neighborhood) method. Recently Li and Gui (2004) suggested, so called PCR(Partial Cox Regression) method which deals with censored survival times and microarray data efficiently via kNN imputation method. In this article, we try to show that the way to treat missingness eventually affects the further statistical analysis.

Machine learning in survival analysis (생존분석에서의 기계학습)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • We investigated various types of machine learning methods that can be applied to censored data. Exploratory data analysis reveals the distribution of each feature, relationships among features. Next, classification problem has been set up where the dependent variable is death_event while the rest of the features are independent variables. After applying various machine learning methods to the data, it has been found that just like many other reports from the artificial intelligence arena random forest performs better than logistic regression. But recently well performed artificial neural network and gradient boost do not perform as expected due to the lack of data. Finally Kaplan-Meier and Cox proportional hazard model have been employed to explore the relationship of the dependent variable (ti, δi) with the independent variables. Also random forest which is used in machine learning has been applied to the survival analysis with censored data.

Confidence Bands for Survival Function Based on Hjort Estimator

  • Byung-Gu Park;Kil-Ho Cho;Woo-Dong Lee;Young-Joon Cha
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • In this paper, we derive the Hall-Wellner band and the equal precistion band for survival function based on Hjort when the data are randomly right censored. The bands ate illustrated and compared by applying them to data from a preoperative radiation therapy.

  • PDF

Regression discontinuity for survival data

  • Youngjoo Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.155-178
    • /
    • 2024
  • Regression discontinuity (RD) design is one of the most widely used methods in causal inference for estimation of treatment effect when the treatment is created by a cutpoint from the covariate of interest. There has been little attention to RD design, although it provides a very useful tool for analysis of treatment effect for censored data. In this paper, we define the causal effect for survival function in RD design when the treatment is assigned deterministically by the covariate of interest. We propose estimators of this causal effect for survival data by using transformation, which leads unbiased estimator of the survival function with local linear regression. Simulation studies show the validity of our approach. We also illustrate our proposed method using the prostate, lung, colorectal and ovarian (PLCO) dataset.

A Study on the Survival Probability and Survival Factors of Small and Medium-sized Enterprises Using Technology Rating Data (기술평가 자료를 이용한 중소기업의 생존율 추정 및 생존요인 분석)

  • Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2010
  • The objectives of this study are to identify the survival function (hazard function) of small and medium enterprises by using technology rating data for the companies guaranteed by Korea Technology Finance Corporation (KOTEC), and to figure out the factors that affects their survival. To serve the purposes, this study uses Kaplan-Meier Analysis as a non-parametric method and Cox proportional hazards model as a semi-parametric one. The 17,396 guaranteed companies that assessed from July 1st in 2005 to December 31st in 2009 are selected as samples (16,504 censored data and 829 accident data). The survival time is computed with random censoring (Type III) from July in 2005 as a starting point. The results of the analysis show that Kaplan-Meier Analysis and Cox proportional hazards model are able to readily estimate survival and hazard function and to perform comparative study among group variables such as industry and technology rating level. In particular, Cox proportional hazards model is recognized that it is useful to understand which technology rating items are meaningful to company's survival and how much they affect it. It is considered that these results will provide valuable knowledge for practitioners to find and manage the significant items for survival of the guaranteed companies through future technology rating.

  • PDF

Bayesian estimation in the generalized half logistic distribution under progressively type-II censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Se, Jung-In
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.977-989
    • /
    • 2011
  • The half logistic distribution has been used intensively in reliability and survival analysis especially when the data is censored. In this paper, we provide Bayesian estimation of the shape parameter and reliability function in the generalized half logistic distribution based on progressively Type-II censored data under various loss functions. We here consider conjugate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, we examine the validity of our estimation using real data and simulated data.

Prole likelihood estimation of generalized half logistic distribution under progressively type-II censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Han, Song-Hui;Seo, Jung-In
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.597-603
    • /
    • 2011
  • The half logistic distribution has been used intensively in reliability and survival analysis especially when the data is censored. In this paper, we provide prole likelihood estimation of the shape parameter and scale parameter in the generalized half logistic distribution based on progressively Type-II censored data. We also introduce approximate maximum prole likelihood estimates for the scale parameter. As an illustration, we examine the validity of our estimation using real data and simulated data.