• Title/Summary/Keyword: Cemented abutment

Search Result 63, Processing Time 0.019 seconds

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

Tensile Strength of Provisional Cement on Natural Abutment and Metal Abutment (자연 지대치와 금속 지대치 상에서 임시 접착제의 인장력에 관한 연구)

  • Lee, Il-Kwon;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • STATEMENT OF PROBLEM: Tensile strength of metal crown cemented with provisional cement have shown clinically difference between metal abutment of implant and natural abutment. PURPOSE: This study was tested to compare the tensile strength of provisional cement on the natural abutment and metal abutment. MATERIAL AND METHODS: Out of the 20 premolars that were selected for this experiment, each 10 were prepared of abutments by chamfer and rounded shoulder margin and then duplicated to produce 20 metal abutments that were same to natural teeth. Then, crowns were fabricated to fit the total 40 natural & metal abutments to be cemented by cavitec, to be added of regular, repetitive vertical load, and to be measured of tensile strength by using Universal Test Machine. RESULTS: There was statistically significant difference in the tensile strength between the crowns cemented to the natural & metal abutments, but no statistically significant difference was observed between the chamfer and the shoulder gingival margin of the each abutments. CONCLUSIONS: Tensile strength of metal teeth is greater about 2 more times than that of natural teeth when it is cemented with Cavitec.

Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses (시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향)

  • Byun, Tae-Hee;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF

A STUDY ON THE COMPLETE RETRIEVAL SYSTEM OF THE CEMENTATION TYPE IMPLANT ABUTMENT (손상 없이 영구 접착 보철물을 제거할 수 있는 cementation type 임플랜트 지대주 개발에 관한 연구)

  • Choi Jin-Ho;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.597-607
    • /
    • 2004
  • Purpose: This study was peformed to investigate the retrievability of the cemented crown from the cementation type implant abutment. Material and method: The cementation type implant abutments (NEOBIOTECH implant abutment regular, 3 degree taper, 10mm length, 4mm diameter, Ti grade III, machined surface. Hwasung, Kyunggi-do) and cemented crowns were divided into 3 groups, depending on their hole angles formed in the crowns for their retrievability. The abutments and crowns were luted with 4 kinds of cements and separation test using metal wedge was executed with Instron 4465 Universal Testing Machine and the maximum impact force of the modified crown ejector was measured. Results and conclusion : 1. All of the cementation type implant abutments and cemented crowns were separated with relatively small force by metal wedge. 2. The retrieving force was minimum when the metal wedge was applied perpendicular to the axis of abutment. 3. The force for retrieving crowns from abutments was maximum in resin cement group, and reduced in orders of zinc phosphate cement, glass ionomer cement and zinc oxide eugenol cement. 4. The maximum force obtained by the crown ejector was higher than the retrieval force in ZOE and GI cement and lower than that in ZPC and resin cement. 5. If it has similar conditions clinically, the cemented crowns luted with 2 types of cements (ZOE, GI cement) can be safely retrieved from the cementation type implant abutments by the modified crown ejector.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.

Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot

  • Choi, Kyu-Hyung;Son, KeunBaDa;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.381-387
    • /
    • 2018
  • PURPOSE. Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS. We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles ($8^{\circ}$, $10^{\circ}$, and $12^{\circ}$), a sloped shoulder margin (0.6 mm depth), a rectangular shape ($6mm{\times}6.5mm$) with rounded edges, and a rectangular ledge ($2mm{\times}1mm$) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque ($N{\cdot}cm$) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION. Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments

  • Safari, Sina;Ghavam, Fereshteh Hosseini;Amini, Parviz;Yaghmaei, Kaveh
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • PURPOSE. The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (${\alpha}=.05$). RESULTS. The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION. Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.

Effect of abutment types and resin cements on the esthetics of implant-supported restorations

  • Asena Ceken;Hamiyet Kilinc;Sedanur Turgut
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • PURPOSE. The aim of the study was to evaluate the optical properties of new generation (3Y-TZP) monolithic zirconia (MZ) with different abutment types and resin cement shades. MATERIALS AND METHODS. A1/LT MZ specimens were prepared (10 × 12 × 1 mm, N = 30) and divided into 3 groups according to cement shades as transparent (Tr), yellow (Y) and opaque (O). Abutment specimens were obtained from 4 different materials including zirconia (Group Z), hybrid (Group H), titanium (Group T) and anodized yellow titanium (Group AT). MZ and abutment specimens were then cemented. L*, a*, and b* parameters were obtained from MZ, MZ + abutment, and MZ + abutment + cement. ∆E001* (between MZ and MZ + abutment), ∆E002* (between MZ and MZ + abutment + cement) and ∆E003* (between MZ + abutment and MZ + abutment + cement) values were calculated. Statistical analyses included 2-way ANOVA, Bonferroni, and Paired Sample t-Tests (P < .05). RESULTS. Abutment types and resin cements had significant effect on L*, a*, b*, ∆E001*, ∆E002*, and ∆E003* values (P < .001). Without cementation, whereas zirconia abutment resulted in the least discoloration (∆E001* = 0.68), titanium abutment caused the most discoloration (∆E001* = 4.99). The least ∆E002* = 0.68 value was seen using zirconia abutment after cementation with yellow shaded cement. Opaque shaded cement caused the most color change (∆E003* = 5.24). Cement application increased the L* values in all groups. CONCLUSION. The least color change with/without cement was observed in crown configurations created with zirconia abutments. Zirconia and hybrid abutments produced significantly lower ∆E002* and ∆E003* values in combination with yellow shaded cement. The usage of opaque shaded cement in titanium/anodized titanium groups may enable the clinically unacceptable ∆E00* value to reach the acceptable level.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

Effect of hemispherical dimples at titanium implant abutments for the retention of cemented crowns

  • Jung-Hoon Choi;Seong-Joo Heo;Jai-Young Koak;Seong-Kyun Kim;Ji-Man Park;Jin-Soo Ahn
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • PURPOSE. The aim of this study was to assess the effect of hemispherical dimple structures on the retention of cobalt-chromium (Co-Cr) crowns cemented to titanium abutments, with different heights and numbers of dimples on the axial walls. MATERIALS AND METHODS. 3.0-mm and 6.0-mm abutments (N = 180) and Co-Cr crowns were prepared. The experimental groups were divided into two and four dimple groups. The crowns were cemented by TempBond and PANAVIA F 2.0 cements. The retention forces were measured after thermal treatments. A two-way Analysis of Variance (ANOVA) and post-hoc Tukey HSD test were conducted to analyze change in retention forces by use of dimples between groups, as well as t test for the effect of abutment height change (α = .05). RESULTS. Results of the two-way ANOVA showed a statistically significant difference in retention force due to the use of dimples, regardless of the types of cements used (P < .001). A significantly higher mean retention forces were observed in the groups with dimples than in the control group, using the post hoc Tukey HSD test (P < .001). Results of t test displayed a statistically significant increase in the retention force with 6.0-mm abutments compared with 3.0-mm abutments (P < .001). The groups without dimples revealed adhesive failure of cements, while the groups with dimples showed mixed failure of cements. CONCLUSION. Use of hemispherical dimples was effective for increasing retention forces of cemented crowns.