• Title/Summary/Keyword: Cement treated soil

Search Result 75, Processing Time 0.028 seconds

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

An Environmentally Friendly Soil Improvement Technology with Microorganism

  • Kim, Daehyeon;Park, Kyungho
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.90-94
    • /
    • 2013
  • Cement or lime is generally used to improve the strength of soil. However, bacteria were utilized to produce cementation of loose soils in this study. The microo rganism called Bacillus, and $CaCl_2$ was introduced into loose sand and soft silt and $CaCO_3$ in the voids of soil particles were produced, leading to cementation of soil particles. In this study, loose sand and soft silt typically encountered in Korea were bio-treated with 3 types of bacteria concentration. The cementation (or calcite precipitation) in the soil particles induced by the high concentration bacteria treatment was investigated at 7 days after curing. Based on the results of Scanning Electron Microscope (SEM) tests and EDX analyses, high concentration bacteria treatment for loose sand was observed to produce noticeable amount of $CaCO_3$, implying a significant cementation of soil particles. It was observed that higher calcium carbonate depositions were observed in poorly graded distribution as compared to well graded distribution. In addition, effectiveness of biogrouting has also been found to be feasible by bio-treatment without any cementing agent.

An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization (연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구)

  • 천병식;김진춘;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

Suggestion for Determination of DCM Design Parameter Based on the Statistical Method (통계적 방법을 이용한 DCM설계정수 결정을 위한 제안)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.462-471
    • /
    • 2008
  • The quality control for DCM is based on the unconfined compressive strength of laboratory treated soils, the cement contents, setting and checking the strength of in-situ treated soils. Also the strength of in-situ is checked mainly by the core boring. In case of large size construction, it might be considered the distribution of DCM strength data as normal distribution, so it might be employed a statistical method to evaluate DCM strength easily. In Japan, it has been established correlation between the strength of laboratory treated soils, the strength of in-suit treated soil and the design strength. Also It has been employed domestically the correlation suggested by Japan. But the correlation, so called $\lambda$(ratio in the strength of laboratory treated soils and the in-suit) and $\gamma$(ratio in the strength of in-suit and the design strength), might be far different with the domestic due to different DCM system and soil properties. so it might be restrictive to use domestically. Therefore in this paper, It is presented correlation between the strength of laboratory treated soils and in-suit treated soil to be employed domestically by evaluating $\lambda$ based on the domestic in-suit illustrations.

  • PDF

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

Strength Characteristic of Waste Fishing Net-added Lightweight Soil Considering Glue Treatment (본딩효과를 고려한 폐어망 보강 경량토의 압축강도 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.39-45
    • /
    • 2012
  • This paper investigates the strength characteristics and stress-strain behaviors of waste fishing net (WFN)-added lightweight soil. The lightweight soil, which consisted of dredged soil, crumb rubber, and cement, was reinforced with WFN in order to increase its shear strength. Glue treated WFN was also added to lightweight soil to improve the interlocking between the soil mixture and WFN. Three kinds of test specimens were prepared: unreinforced lightweight soil, reinforced lightweight soil without glue treatment, and reinforced lightweight soil with glue treatment. Several series of laboratory tests were carried out, including flow value tests, unconfined compression tests, and SEM analyses. From the experimental results, it was found that the peak strength of the reinforced lightweight soil with glue treatment was increased by the increased interlocking between the soil mixture and WFN, which was induced from the bonding effect. The stress-strain relation of the reinforced lightweight soil, irrespective of the glue treatment, showed a more ductile behavior than that of the unreinforced lightweight soil.

The Analysis of Internal & External Stabilities and Factors for D.C.M Design (DCM 설계에서 주요 인자의 결정과 내.외적 안정해석)

  • Lee, Choong-Ho;Jung, Seung-Yong;Han, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.793-808
    • /
    • 2009
  • This paper presents procedure and prediction method of internal and external stabilities when designing D.C.M, with main factors to be considered, such as chemical reaction of additive, physical properties of stabilized body and mixing strength. Results show that through case studies, a design unconfined compressive strength of stabilized body (hereafter referred to as 'compressive strength') directly depends on the quantity of cement, which is decided by laboratory test, and the compressive strength enormously affects internal and external stabilities. So laboratory mixing test to obtain the compressive strength for design allowable stress should be given careful considerations.

  • PDF

Engineering characteristics of reinforced solidified roadbed (친환경 도로조성을 위한 보강형 고화도로노반의 공학적 특성)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.906-909
    • /
    • 2005
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent and reinforced fiber. The special amendment agent and fiber used in this study has a function of soil-cement-agent solidification and reinforcement. A series of laboratory experiments including unconfined compressive strength, tensile strength, compaction test were carried out to investigate the physical and mechanical characteristics of roadbed treated by solidifying agent and fiber. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent and fiber.

  • PDF