• Title/Summary/Keyword: Cement exposure

Search Result 180, Processing Time 0.027 seconds

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

THE CYTOTOXIC EFFECTS OF GLASS-IONOMER CEMENT LINERS ON FIBROBLASTS IN HUMAN PULP (Glass-ionomer Cement 이장재의 세포독성에 관한 연구)

  • Na, Young-Min;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.261-276
    • /
    • 1993
  • The purpose of this study was to evaluate for the cytotoxicity of glass-ionomer cement liners(GC liningcement, Ketac-bond, Vitrebond and Fuji lining LC) on the fibroblasts cultured from human pulp. The fibroblasts were cultured in DMEM-10% FBS medium. The measurement of pH, succinate dehydrogenase (SDH) activity test and $^{51}Chromium$ release test were performed. Viable cell count and $^{14}C$-leucine incorporation rate were evaluated following culture time of 2, 4 and 6 days. The results of this study were as follows : 1. The pH in all cements was to be neutralized as time elapsed, and Fuji lining LC was the lowest pH value among them. 2. SDH activity was more inhibited in GC lining cement and Vitrebond than Ketac-bond and Fuji lining LC with the setting process, and GC lining cement and Ketac-bond were reduced after 5 minute's setting and then elevated as time elapsed. 3. In SDH activity test following exposure time, the activity in Vitrebond, GC lining cement and Fuji lining LC was inhibited with increased exposure time, but it was fairly constant in Ketac-bond. 4. Overall the liquid component was more inhibited than the powder component of glass-ionomer cement in SDH activity test. 5. In $^{51}Cr$-release test, Fuji lining LC was the most released of all the cements tested and followed by : Vitrebond, Ketac-bond, GC lining cement. 6. In viable cell count, the number of cells increased as the culture day proceeded in Ketac-bond, but they decreased in GC lining cement. Fuji lining LC was only observed after 2 days culture and there was not observed the whole culture days in Vitrebond. 7. In $^{14}C$-leucine incorporation rate test, protein synthesis was decreased with the number of culture days in GC lining cement, Vitrebond and Fuji lining LC, but it was followed that of control in Ketacbond.

  • PDF

Cytotoxic effects of different self-adhesive resin cements: Cell viability and induction of apoptosis

  • Sismanoglu, Soner;Demirci, Mustafa;Schweikl, Helmut;Ozen-Eroglu, Gunes;Cetin-Aktas, Esin;Kuruca, Serap;Tuncer, Safa;Tekce, Neslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • PURPOSE. The effects of four different self-adhesive resin cement materials on cell viability and apoptosis after direct and indirect exposure were evaluated using different cell culture techniques. MATERIALS AND METHODS. Self-adhesive cements were applied to NIH/3T3 mouse fibroblasts by the extract test method, cell culture inserts, and dentin barrier test method. After exposure periods of 24 h and 72 h, the cytotoxicity of these self-adhesive materials was evaluated using the MTT assay (viability) and the Annexin-V-FITC/PI staining (apoptosis). RESULTS. The lowest cell viability was found in cells exposed to BeautiCem SA for 24 h in the extract test method. Cell viability was reduced to 70.6% compared to negative controls. After the 72 h exposure period, viability rate of cell cultures exposed to BeautiCem SA decreased more than 2- fold (29.5%) while cells exposed to RelyX U200 showed the highest viability rate of 71.4%. In the dentin barrier test method, BeautiCem SA induced the highest number of cells in apoptosis after a 24 h exposure (4.1%). Panavia SA Cement Plus was the material that caused the lowest number of cells in apoptosis (1.5%). CONCLUSION. The used self-adhesive cements have showed different cytotoxic effects based on the evaluation method. As exposure time increased, the materials showed more cytotoxic and apoptotic effects. BeautiCem SA caused significantly more severe cytotoxic and apoptotic effects than other cements tested. Moreover, cements other than BeautiCem SA have caused necrotic cell death rather than apoptotic cell death.

Efficiency Assessment of Crack Maintenance Material Using Ultra Fine Cement (초미립자시멘트를 이요한 균열보수재 성능평가 연구)

  • 백인관;박현수;정란
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1095-1100
    • /
    • 2000
  • Concrete structure often exhibit cracks due to the combination of material construction and design error. Minor crack can be tolerated depending on exposure condition, but major cracks are aesthetically unpleasant and affect the durability and safety of the structure. All of the reinforced concrete structure have many inevitable cracks for various reason such as drying shrinkage, heat liberation of cement and over loads. Epoxy resin injection widely used for repairing cracks in concrete is too sensitive to high temperature. Besides, the problem in the epoxy resin injection is the difficulty of quality control after execution. Whereas, Ultra Fine Cement is similar in coefficient of thermal expansion and modulus of elasticity to concrete. The objective of the study is to find out that it is possible for Ultra Fine Cement to be used for repairing cracks in reinforced concrete.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

An Experimental Study about appling non-Exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Self adhesive Rubberized Asphalt sheet to the Roof Structure. (무기질계 탄성 도막재와 자착식 고무 아스팔트 시트를 결합한 지붕구조물 비노출 방수공법에 관한 실험적 연구)

  • Moon, You-Seok;Lee, Sun-Gyu;Song, Je-Yeong;Gwak, Gyu-Seong;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.613-616
    • /
    • 2008
  • This study is about appling non-exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Selfadhesive Rubberized Asphalt sheet to the Roof Structure, Because there are a lot of problems in previous methods. So We had the performance tests using waterproofing method which combines two materials, and we analyzed the results. This study showed us very important results. We had bond strength test and tensile test under high, normal and low temperature, and the results were successful. And we also tested for coping with crack and movement. We found that tested materials were safe in those conditions. I think that Non-Exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Selfadhesive Rubberized Asphalt sheet is available to concrete structure.

  • PDF

Permeability and Strength of Cements Exposed to Supercritical CO2 for Varying Periods (초임계 CO2 - 시멘트 반응 전후의 투수율 및 강도 변화)

  • Lee, Hikweon;Kim, Kideok;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • Chemical reaction tests were performed to assess the properties of hardened specimens of cement pastes (KS-1 Portland and Class G) exposed to supercritical CO2 for 1, 10, and 100 days. After exposure, the samples' measured permeability and strength were compared with values measured for pristine samples. The pristine cements had permeabilities of 0.009~0.025 mD, which increased by one order of magnitude after 100 days of exposure (to 0.11~0.29 mD). The enhancement of permeability is attributed to the stress release experienced by the samples after removal from the pressure vessel after exposure. Despite its enhancement, the measured permeability mostly remained lower than the API (American Petroleum Institute) recommended maximum value of 0.2 mD. The degradation of the cement samples due to exposure to supercritical CO2 led to a layer of altered material advancing inwards from the sample edges. The Vickers hardness in the altered zone was much higher than that in the unaltered zone, possibly owing to the increase in density and the decrease in porosity due to the carbonation that occurred in the altered zone. Hardness close to the edge within the altered zone was found to have decreased significantly, which is attributed to the conversion of C-S-H into less-strong amorphous silica.

The Evaluation of Compressive Strength in Cement Mortar using Electromagnetic Properties (전자기 특성을 이용한 시멘트 모르타르의 압축강도 평가)

  • Kim, Dong-Baek;Kwon, Seung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • NDT(Non-Destructive Testing Evaluation) using electromagnetic(EM) properties can be used for evaluation of physical performance in cement-based materials. In this study, a technique for strength evaluation in cement mortar is proposed through the measured EM properties(conductivity and dielectric constant). For this research, cement mortar specimens with 5 W/C ratios are made for evaluation of compressive strength and they are also utilized for tests of EM properties in the range of $0.2{\sim}20GHz$ frequency considering exposure condition and curing period. The averaged conductivity and dielectric constant in $5{\sim}20GHz$ frequency are reduced to $83{\sim}93%$ and $81{\sim}87%$, respectively with increasing water to cement ratios. Through the linear regression analysis, relationships between EM properties and results from the compressive strength are obtained, which shows higher correlated factor($0.93{\sim}0.94$) in the specimens exposed to room condition. The gradients in dielectric constant for strength results is measured to be higher than those in conductivity by $3.9{\sim}5.1$ times. The results from dielectric constant in room condition shows the most efficient relation for evaluation of strength.

Determination of Critical Chloride Content of Ordinary Portland Cement Concrete by Linear Polarization Technique (선형분극법을 이용한 보통프틀랜드시멘트 콘크리트의 임계염화물량)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.524-528
    • /
    • 2007
  • The results of evaluating steel corrosion in concrete containing chloride content of various levels indicated that the more chloride content in concrete leads to the lower potential and higher corrosion current density. However, the open circuit potential of steel varied with time and exposure condition, and the corelation between the open circuit potential and corrosion current density was not obvious. In order to determine the critical threshold content of chloride of steel corrosion in concrete, the concept of average corrosion current density was employed. The range of critical chloride content in portland cement concretes was about $1.56{\sim}1.77%$($Cl^-$, %, wt of cement content) along with water-cement ratio, and higher water-cement ratio resulted in reduction in critical threshold chloride content.

An Experimental Study on the Durability and Reinforcement Corrosion of Polymer Cement Based Repair Material (폴리머시멘트계 단면복구재의 내구성 및 철근부식특성에 관한 실험적 연구)

  • Kim Young Sun;Kim Young Duck;Na Chul Sung;Cho Bong Suk;Kim Gyu Yong;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.487-490
    • /
    • 2005
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the data of indoor durability test and the data of the long term exposure test under the coast are accumulated and analyzed. As a result of the indoor test, durability of repair material was more superior to that of plain concrete, but as a result of investigating and evaluating exposure test at 30 month of exposure age under the coastal environment, the difference in electric potential and the reinforcement corrosion at place replaced with repair material are found.

  • PDF