• Title/Summary/Keyword: Cellulose nanocrystal

Search Result 9, Processing Time 0.028 seconds

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

Heat-Treated Polyvinyl Alcohol/Cellulose Nanocrystal Film with Improved Mechanical Properties and Water Resistance (내수성 및 기계적 물성이 향상된 열처리된 폴리비닐알코올/셀룰로오스 나노결정 필름)

  • Nguyen, Son Van;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, the water resistance and mechanical properties of heat-treated polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) films were investigated. PVA is the most commonly used synthetic biodegradable polymers owing to its excellent properties. However, the water/moisture sensitivity and relatively poor mechanical properties of PVA limits its applications. Although heat treatment is a conventionally used method to improve the mechanical strength and water resistance of PVA, the effectiveness of this method is insufficient. Therefore, CNC was used to further improve the mechanical properties and water resistance of the heat-treated PVA film. PVA/CNC nanocomposites containing CNC contents of 0, 1, 3, 5, and 10 wt% were fabricated using solvent casting and subsequent heat treatment. The mechanical properties and water resistance of PVA/CNC films were significantly improved. The tensile strength and wet strength of the PVA/CNC film with a CNC content of 5 wt% (PVA/CNC 5%) were 184.5% and 136.0% higher than those of the untreated PVA, respectively. In addition, the water absorption and solubility of PVA/CNC 5% were 56.6% and 68.2% lower than those of the untreated PVA.

Effects of cellulose nanocrystals and graphene oxide on hydration heat of cement paste (셀룰로오스 나노크리스탈과 산화그래핀이 시멘트 페이스트의 수화열에 미치는 영향)

  • Lee, Yun-Kyung;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.189-190
    • /
    • 2023
  • In this study, the compressive strength and hydration heat of cement paste mixed with cellulose nanocrystal(CNC) and graphene oxide (GO) were evaluated. The difference was compared by mixing 0.1 vol.% ~0.4 vol.% of CNC and 0.05 wt.% ~ 0.1 wt.% of GO in a cement paste with a water cement ratio of 0.3. As a result, it was confirmed that the compressive strength increased as CNC and GO were mixed respectively, and then the compressive strength decreased when the appropriate mixing rate was exceeded. In the hydration heat measurement, there was no significant difference when only CNC was mixed, but it was confirmed that the hydration heat decreased as the amount of CNC mixing increased when used in combination with GO.

  • PDF

Reinforcing Efficiencies of Two Different Cellulose Nanocrystals in Polyvinyl Alcohol-Based Nanocomposites

  • Park, Byung-Dae;Causin, Valerio
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.250-255
    • /
    • 2013
  • As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about $6.96{\pm}0.87nm$ wide and $178{\pm}55nm$ long, while CNFs were $7.07{\pm}0.99nm$ wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber (각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향)

  • Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats (전기방사를 이용한 PLA/CNC 복합 매트의 기초 특성)

  • Jo, Yu-Jeong;Lee, Sun-Young;Chun, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.518-527
    • /
    • 2015
  • In this study, nanocomposite mats consisting of cellulose nanocrystals (CNCs) and poly(lactic acide) (PLA) were electrospun from a suspension mixture consisting of tetrahydrofuran at room temperature. Morphology study showed that fibers of electrospun composite mats were aligned in three dimensional surface along the fiber long-axis. Average diameter of the electrospun fibers decreased with an increase in the CNC loading level. Tensile strength of the electrospun fibers mat decreased with an increase in the CNC loading level because of bead formation in the formed fibers and low interfacial bond strength between PLA and CNC. Meanwhile, thermal stability of the electrospun nanocomposite mats was effectively improved as the amount of CNC increased.

Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering

  • Sinha, Arvind;Martin, Elizabeth M.;Lim, Ki-Taek;Carrier, Danielle Julie;Han, Haewook;Zharov, Vladimir P.;Kim, Jin-Woo
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.373-393
    • /
    • 2015
  • Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs' unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.

Effect of Nanocellulose and Aminated Starch on Tensile and Thermal Properties of Plasticized Starch Film (가소화 전분필름의 강도 및 열적 성질에 미치는 나노셀룰로오스 및 아민화전분의 첨가영향)

  • Kim, Bo-Yeon;Han, Song-Yi;Lee, Sung-Yong;Kim, Young-Kyoon;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.376-384
    • /
    • 2014
  • This study investigated the effect of nanocellulose, such as microfibrillated cellulose (MFC) and cellulose nanocrystal (CNC), and aminated starch on tensile property and thermal stability of plasticized starch film. Glycerol (23 wt%) was used as a plasticizer and nanocelluloses of 1-30 parts per hundred parts of resin (phr) in the basis of plasticized starch were added. Tensile strength and elastic modulus increased with increasing nanocellulose addition amount, whereas elongation at break decreased. Tensile properties of MFC-reinforced starch film were higher than those of CNC-reinforced film. Optimum addition amount of aminated starch, which is commonly used for paper sizing, to improve tensile property of film, was found to be 5%. And 1% addition of aminated starch showed the best effect in the improvement of tensile property of the film. Thermal stability was improved with the addition of MFC to plasticized starch film with and without aminated starch.

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.