• Title/Summary/Keyword: Cellular transformation

Search Result 132, Processing Time 0.033 seconds

DNAJB9 Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation

  • Lee, Hyeon Ju;Jung, Yu-Jin;Lee, Seungkoo;Kim, Jong-Il;Han, Jeong A.
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.397-407
    • /
    • 2020
  • DNAJB9 is known to be a member of the molecular chaperone gene family, whose cellular function has not yet been fully characterized. Here, we investigated the cellular function of DNAJB9 under strong mitogenic signals. We found that DNAJB9 inhibits p53-dependent oncogene-induced senescence (OIS) and induces neoplastic transformation under oncogenic RAS activation in mouse primary fibroblasts. In addition, we observed that DNAJB9 interacts physically with p53 under oncogenic RAS activation and that the p53-interacting region of DNAJB9 is critical for the inhibition of p53-dependent OIS and induction of neoplastic transformation by DNAJB9. These results suggest that DNAJB9 induces cell transformation under strong mitogenic signals, which is attributable to the inhibition of p53-dependent OIS by physical interactions with p53. This study might contribute to our understanding of the cellular function of DNAJB9 and the molecular basis of cell transformation.

사람 유래의 MCF10A, Chang liver및 HaCaT 세포의 소핵형성 및 세포형질전환에 미치는 2,3,7,8-Tetrachlorodibenzo-p-dioxin의 영향

  • 엄미옥;박미영;김종원;박미선;한의식;오혜영;정해관
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2004
  • Although 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) is a powerful carcinogen in several species, limited model system exist to study carcinogenicity of this compound at cellular level. To enhance our under-standing of carcinogenicity of TCDD at cellular level, we investigated micronucleus (MN) frequency as a index of genetic toxicity and whether TCDD can transform the human cells in culture. Normal human cell lines, skin keratinocyte HaCaT, Chang liver and breast MCF10A cells were used. TCDD did not affect the cell viability of the Chang liver, HaCaT and MCF10A cells. The frequency of micronucleus was increased after treatment of TCDD for 24hr in Chang liver and HaCaT cells, but not changed in MCF10A cells. And we observed putative transformed cells in Chang liver cells exposed to 1 $\mu$M TCDD for 2 weeks. The putative transformed cells were also observed in HaCaT cells with subsequent exposure to TCDD (0.1, 1, 10, 100 nM) for 2 weeks after initial exposure to MNNG, but not observed in MCF10A cells. Collectively, these results indicate that the ability of TCDD to induce micronuclei may be involved in cellular transformation of Chang liver and HaCaT cells. Our putative TCDD-transformed cells of Chang liver and HaCaT are expected to provide a clue to the elucidation of TCDD-induced transformation pathway.

  • PDF

ACRYLAMIDE-INDUCED NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (Acrylamide가 인체상피세포의 발암화에 미치는 영향)

  • Kim, Sang-Kyu;Kim, Jin-Wook;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.602-610
    • /
    • 2008
  • Purpose Acrylamide is present in significant quantities in a wide range of commonly consumed human foods. Carcinogenic risk of acrylamide through the consumption of food is a great public concern and in controversy, but it is not properly addressed due to the lack of evidence in humans. While a plenty of data is available on the carcinogenicity in animal models, the studies in humans are limited. Thus, the present study attempted to examine the carcinogenic potentials of acrylamide on the human epithelial cell, which is the target cell origin of the most cancers. Material and method & Result 1. Acrylamide was not cytotoxic up to $100{\mu}M$ as measured by MTT and LDH assays, indicating a relatively low toxicity of this substance in human epithelial cells. 2. The parameters of neoplastic cellular transformation such as cell saturation density, soft-agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of acrylamide. 3. The neoplastic transformation was further increased with the co-treatment of TPA 4. Antioxidants blocked the generation of Reactive Oxygen Species(ROS) and the GSH depleting agent dramatically increased the ROS production. 5. mRNA levels of fibronectin following acrylamide exposure was increased in a dose-dependent manner, indicating a possible biomarker of acrylamide-induced cellular transformation. Conclusion The present study will provide a valuable basis to compare the interspecies differences in response to carcinogenic potentials of acrylamide. The data on the interspecies differences are essential element in human risk assessment. Thus, our results obtained from the human epithelial cells will contribute to improving the risk assessment of human neoplasm including oral cancer.

Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

  • Lee, Sa Mi;Kang, Kyungsu;Chung, Hyunsup;Yoo, Soon Hee;Ming Xu, Xiang;Lee, Seung-Bum;Cheong, Jong-Joo;Daniell, Henry;Kim, Minkyun
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastidexpressed green fluorescent protein (GFP) and aminoglycoside 3′-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

Thermal Acclimative Changes in the Different Lipid Fractions Composition of Fat Body of Eri-Silkworm, Philosamia Ricini (Ward.)

  • Singh, G.B.;Singh, M.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • Present communication deals with quantitative determination of total lipid, triglycerides, total free fatty acids, phospholipids and total cholesterol in the fat body tissue of the silkworm adapted to low and high temperatures. At the end of spinning process is characterized by a marked cellular reorganization of the different lipid fraction of the fat body irrespective of thermal acclimation. Accordingly, the per cent composition of triglycerides of the total lipid is increased accompanied by a corresponding decrease in free fatty acids, phospholipids and cholesterol.

EFFECTS OF SIGNAL TRANSDUCTION PATHWAY IN THE RAS-INDUCED CELLULAR TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (인체 상피세포에서 ras-종양유전자의 발암화가 신호 전달 기작에 미치는 영향)

  • Jang, Do-Geun;Byeon, Ki-Jeong;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2000
  • The present study has attempted to look into the mechanism of ras-induced carcinogenesis in a human epithelial cell system. Human epithelial cells immortalized with Ad12-SV40 hybrid virus were used to assess carcinogenic potential of the ras-oncogene. Cells transfected with pSV2-ras showed characteristics of cellular transformation. The transformation parameters such as cell density, soft-agar colony formation, and cell aggregation were significantly increased in the cells expressing ras oncoprotein. In addition, the duration required for the appearance of foci was shortened in the ras-transfected cells. Consistent with other reports, our results demonstrated an evidence that the ras-oncogene induced the cellular transformation of human epithelial cell system. When a high concentration of glucocorticoid was added into the media, transformation process was accelerated. It is speculated that glucocorticoid may provide an advantageous environment for the proliferation of the transformed cells. The induction of the intracellular free calcium concentrations following agonist treatment was significantly lower in the transformed cells than in the control cells. These effects were more manifested in the presence of extracellular cacium, indicating that the transformation process may alter the influx pathway of extracellular calcium. The induction of $IP_3$ following agonist treatment was also lower in the transformed cells than in the control cells. Thus, it is suggested that phospholipase C-coupled pathway was down-regulated in the process of the ras-induced transformation. While the levels of $TGF-{\beta}_1$ and PAI-2 mRNAs were decreased, the level of fibronectin mRNA was increased. The results indicate that mechanism of the ras-induced transformation may be associated with the altered expressions of growth regulatory factors. The present study demonstrates an evidence that the ras-induced cellular transformation may be associated with alteration of signal transduction and growth regulatory factors. The study will contribute to improve the understanding of molecular mechanism of epithelium-derived cancers including oral cancer.

  • PDF

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

EFFECTS OF HYDROQUINONE ON NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (Hydroquinone이 인체 상피세포의 발암화에 미치는 영향)

  • Sohn, Jung-Hee;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.218-228
    • /
    • 2010
  • Components of dental resin-based restorative materials are reported to leach from the filling materials even after polymerization. Hydroquinone (HQ) is one of the major monomers used in the dental resin and is known as a carcinogen. Thus, carcinogenic risk of HQ leaching from the dental resin becomes a public health concern. The present study attempted to examine the carcinogenic potentials of HQ on the human epithelial cell, which is the target cell origin of the most of oral cancers. Cytotoxicity of HQ was observed above 50${\mu}M$ as measured by LDH assay, indicating a relatively low toxicity of this substance in human epithelial cells. The parameters of neoplastic cellular transformation such as cell saturation density, soft agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of HQ. The study showed that 2-week exposure of HQ showed the tendency of increase in the saturation density and the significant enhancement of soft agar colony formation at the highest dose, 50 ${\mu}M$ only. It is suggested that HQ has a weak potential of carcinogenicity. When cells were treated with HQ and TPA, a well-known tumor promoter, the parameters of neoplastic cellular transformation was significantly increased. This result indicates that the potential risk of carcinogenicity from HQ is largely dependent upon the presence of promoter. Exposure of 50 ${\mu}M$ HQ increased the time-dependent apoptosis as measured by the ELISA kit. This concentration coincides with a dose of neoplastic transformation, indicating a possible link between apoptosis and HQ-induced cellular transformation. Hydroquinone generated Reactive Oxygen Species (ROS) which was evidenced by the treatment of antioxidants such as trolox and N-acetyl cysteine and the GSH depleting agent, BSO. Antioxidants blocked the generation of ROS and the GSH depleting agent, BSO dramatically increased the ROS production. Since HQ is known to increase ROS production thru activation of transcriptional factor such as c-Myb and Pim-1, it is speculated that ROS generation by HQ plays a role in the activation of oncogene, which may lead to neoplastic transformation. In addition, ROS is involved in the alteration of signal transduction, which regulates the apoptosis in many cellular systems. Thus, ROS-mediated apoptosis may be involved in the HQ-induced carcinogenic processes. Protein kinase C (PKC) is known to play pivotal roles in neoplastic transformation of cells and its high expression is often found in a variety of types of tumors including oral cancer. PKC translocation of PKC-${\alpha}$ was observed following HQ exposure. Altered signaling system may also play a role in the transformation process. Taken together, HQ leached from the dental resin does not pose a significant threat as a cancer causing agent, but its carcinogenic potential can be significantly elevated in the presence of promoter. The mechanism of HQ-induced carcinogenesis involved ROS generation, apoptosis and altered signaling pathway. The present study will provide a valuable data to estimate the potential risk of HQ as a carcinogen and understand mechanism of HQ-induced carcinogenesis in human epithelial cells.

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

Glandular papilloma of the lung with malignant transformation

  • Sung, Woo Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.298-302
    • /
    • 2017
  • Glandular papilloma of the lung is one of three histologic types of solitary endobronchial papillomas. It is known as an uncommon benign neoplasm. No malignant glandular papillomas have been reported. Herein, the first case of granular papilloma with malignant transformation is reported. A 74-year-old man with huge right lung mass extended upper and lower lobe was admitted to the hospital complaining of progressive cough and dyspnea. An open lung biopsy was performed. Microscopically, the tumor showed papillary growth pattern with thick fibrovascular cores. The stroma of the fibrovascular cores shown the infiltration of lymphoplasmacytic cells and proliferation of capillaries. The epithelial cells surrounding the papillary fronds were cilliated columnar cells with focal cellar atypia, and frequent mitoses. Suspicious pleural invasion foci were identified. The Ki-67 labeling index was about 24.3% and p53 labeling index was about 31.7%. Glandular papilloma is known as a benign neoplasm, which is lack of atypia and mitosis. In present case, there were several indications of malignant transformation, such as cellular atypia, frequent mitosis, architectural distortion, and pleural invasion. Pathologists must be aware that glandular papilloma can have a changes of malignant transformation. Further studies about disease behavior and molecular characteristics are needed.