• 제목/요약/키워드: Cellular metabolism

검색결과 588건 처리시간 0.025초

식품을 이용한 대식세포 에너지 대사 조절 (A novel approach for dietary regulation of macrophages through mitochondrial energy metabolism)

  • 유승민;김우기
    • 식품과학과 산업
    • /
    • 제55권3호
    • /
    • pp.264-275
    • /
    • 2022
  • The regulation of macrophages is a major target for dietary immune modulation for their involvement in both innate and adoptive immune responses. Studies revealed that macrophages are unique in their plasticity to polarize into either inflammatory M1 subset or anti-inflammatory M2 cells. Recently, cellular energy metabolism including both glycolysis and oxidative phosphorylation is demonstrated to control macrophage dichotomy. In this review, the differential utilization of glucose, lipids, amino acids, and irons by M1 and M2 cells are discussed in detail. In addition, several dietary approaches for the alteration of inflammatory M1 cells to M2 phenotypes are reviewed for development of functional foods for immune regulation.

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Ferroptosis and its role in gastric and colorectal cancers

  • Jinxiu Hou;Bo Wang;Jing Li;Wenbo Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.183-196
    • /
    • 2024
  • Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.

OPB, a water extract from Rehmannia glutinosa Libosch and Eleutherococcus senticosus Max, inhibits osteoclast differentiation and function

  • Kim, Jung-Keun;Kim, Se-Won;Kim, Hae-Young;Lee, Byung-Eui;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.23-34
    • /
    • 2007
  • We performed the present study to investigate whether Rehmannia glutinosa Libosch (RG) extracts (RGX) and Eleutherococcus senticosus Max (ES) extracts (ESX) play any roles in bone metabolism. We examined cellular activities of bone cells by measurement of osteoblastic cell viability, osteoprotegerin (OPG) secretion from osteoblasts, osteoclastogenesis, and osteoclastic activity. There is no cytotoxicity from osteoblasts after treatment with RGX and ESX. The secretion of OPG from the osteoblasts showed marked increases after treatment with RGX and ESX. In addition, RGX and ESX treatment decreased the number of tartrate-resistant acid phosphatase-positive multinucleated cells and the resorption areas. RGX and ESX, when mixed at optimal ratios, induced synergic effects, in vitro. OPB, which showed synergic effects, is the extract of natural ingredients RG and ES mixed at a raw material weight ratio of 4 : 1. It can be suspected that extracts of RG and ES mixtures contains active ingredients involved in bone tissue metabolism and may be effective in improving osteoporosis.

Epigenetics: Linking Nutrition to Molecular Mechanisms in Aging

  • Park, Joo Hyun;Yoo, Yeongran;Park, Yoon Jung
    • Preventive Nutrition and Food Science
    • /
    • 제22권2호
    • /
    • pp.81-89
    • /
    • 2017
  • Healthy aging has become a major goal of public health. Many studies have provided evidence and theories to explain molecular mechanisms of the aging process. Recent studies suggest that epigenetic mechanisms are responsible for life span and the progression of aging. Epigenetics is a fascinating field of molecular biology, which studies heritable modifications of DNA and histones that regulate gene expression without altering the DNA sequence. DNA methylation is a major epigenetic mark that shows progressive changes during aging. Recent studies have investigated aging-related DNA methylation as a biomarker that predicts cellular age. Interestingly, growing evidence proposes that nutrients play a crucial role in the regulation of epigenetic modifiers. Because various nutrients and their metabolites function as substrates or cofactors for epigenetic modifiers, nutrition can modulate or reverse epigenetic marks in the genome as well as expression patterns. Here, we will review the results on aging-associated epigenetic modifications and the possible mechanisms by which nutrition, including nutrient availability and bioactive compounds, regulate epigenetic changes and affect aging physiology.

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance

  • Lee, Kyung S.;Park, Jung-Eun;Kang, Young Hwi;Kim, Tae-Sung;Bang, Jeong K.
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.286-294
    • /
    • 2014
  • Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.

Flightless-I Controls Fat Storage in Drosophila

  • Park, Jung-Eun;Lee, Eun Ji;Kim, Jung Kwan;Song, Youngsup;Choi, Jang Hyun;Kang, Min-Ji
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.603-611
    • /
    • 2018
  • Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.

Effects of the Constituents of Paeonia lactiflora Root on Arachidonate and NO Metabolism

  • Choi, Yong-Hwan;Gu, Lianyu;Kim, Yeong-Shik;Kang, Sam-Sik;Kim, Ju-Sun;Yean, Min-Hye;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • 제14권4호
    • /
    • pp.216-219
    • /
    • 2006
  • In order to establish the anti-inflammatory cellular mechanism of the paeony root(Paeonia lactiflora, Pall, Paeoniaceae), the constituents including paeoniflorin, albiflorin, (+)-catechin, paeonol, benzoic acid and methyl gallate were evaluated for their effects on arachidonate and NO metabolism. Among the compounds tested, only paeonol weakly inhibited cyclooxygenase-2-mediated $PGE_2$ production from LPS-treated RAW 264.7 cells. (+)-Catechin and methyl gallate weakly inhibited inducible nitric oxide synthase-mediated NO production from the same cell line. In particular, methyl gallate significantly inhibited 5-lipoxygenase from RBL-l cells with an $IC_{50}$ of 8.4 ${\mu}M$. These results suggest that the inhibition of these components on arachidonate and NO metabolism may contribute at least in part to anti-inflammatory mechanism of the paeony root.

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise

  • Lee, Young-Ik;Leem, Yea-Hyun
    • 운동영양학회지
    • /
    • 제23권2호
    • /
    • pp.1-6
    • /
    • 2019
  • [Purpose] Strenuous exercise often induces skeletal muscle damage, which results in impaired performance. Sphingolipid metabolism contributes to various cellular processes, including apoptosis, stress response, and inflammation. However, the relationship between exercise-induced muscle damage and ceramide (a key component of sphingolipid metabolism), is rarely studied. The present study aimed to explore the regulatory role of sphingolipid metabolism in exercise-induced muscle damage. [Methods] Mice were subjected to strenuous exercise by treadmill running with gradual increase in intensity. The blood and gastrocnemius muscles (white and red portion) were collected immediately after and 24 h post exercise. For 3 days, imipramine was intraperitoneally injected 1 h prior to treadmill running. [Results] Interleukin 6 (IL-6) and serum creatine kinase (CK) levels were enhanced immediately after and 24 h post exercise (relative to those of resting), respectively. Acidic sphingomyelinase (A-SMase) protein expression in gastrocnemius muscles was significantly augmented by exercise, unlike, serine palmitoyltransferase-1 (SPT-1) and neutral sphingomyelinase (N-SMase) expressions. Furthermore, imipramine (a selective A-SMase inhibitor) treatment reduced the exercise-induced CK and IL-6 elevations, along with a decrease in cleaved caspase-3 (Cas-3) of gastrocnemius muscles. [Conclusion] We found the crucial role of A-SMase in exercise-induced muscle damage.