Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0002

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance  

Lee, Kyung S. (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health)
Park, Jung-Eun (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health)
Kang, Young Hwi (Immune and Vascular Cell Network Research Center, Department of Life Science and GT5 Program, Ewha Womans University)
Kim, Tae-Sung (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health)
Bang, Jeong K. (Division of Magnetic Resonance, Korea Basic Science Institute)
Abstract
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.
Keywords
non-self-priming; self-priming; Plk1; polo-box domain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, K.S., and Erikson, R.L. (1997). Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol. Cell. Biol. 17, 3408-3417.   DOI
2 Lee, K.S., Yuan, Y.-L., Kuriyama, R., and Erikson, R.L. (1995). Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol. Cell. Biol. 15, 7143-7151.   DOI
3 Lee, K.S., Grenfell, T.Z., Yarm, F.R., and Erikson, R.L. (1998). Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301-9306.   DOI   ScienceOn
4 Lee, K.S., Park, J.E., Kang, Y.H., Zimmerman, W., Soung, N.K., Seong, Y.S., Kwak, S.J., and Erikson, R.L. (2008). Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: Self- versus non-self-priming. Cell Cycle 7, 141-145.   DOI
5 Lowery, D.M., Mohammad, D.H., Elia, A.E., and Yaffe, M.B. (2004). The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3, 128-131.
6 Lenart, P., Petronczki, M., Steegmaier, M., Di Fiore, B., Lipp, J.J., Hoffmann, M., Rettig, W.J., Kraut, N., and Peters, J.M. (2007). The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304-315.   DOI   ScienceOn
7 Leung, G.C., Hudson, J.W., Kozarova, A., Davidson, A., Dennis, J.W., and Sicheri, F. (2002). The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat. Struct. Biol. 9, 719-724.   DOI   ScienceOn
8 Liu, F., Park, J.E., Qian, W.J., Lim, D., Graber, M., Berg, T., Yaffe, M.B., Lee, K.S., and Burke, T.R.J. (2011). Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat. Chem. Biol. 7, 595-601.   DOI   ScienceOn
9 Lowery, D.M., Lim, D., and Yaffe, M.B. (2005). Structure and function of polo-like kinases. Oncogene 24, 248-259.   DOI   ScienceOn
10 Minoshima, Y., Hori, T., Okada, M., Kimura, H., Haraguchi, T., Hiraoka, Y., Bao, Y.C., Kawashima, T., Kitamura, T., and Fukagawa, T. (2005). The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25, 10315-10328.   DOI   ScienceOn
11 Neef, R., Preisinger, C., Sutcliffe, J., Kopajtich, R., Nigg, E.A., Mayer, T.U., and Barr, F.A. (2003). Phosphorylation of mitotic kinesinlike protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863-875.   DOI   ScienceOn
12 Neef, R., Gruneberg, U., Kopajtich, R., Li, X., Nigg, E.A., Sillje, H., and Barr, F.A. (2007). Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat. Cell. Biol. 9, 436-444.   DOI   ScienceOn
13 Park, J.E., Erikson, R.L., and Lee, K.S. (2011). Feed-forward mechanism of converting biochemical cooperativity to mitotic processes at the kinetochore plate. Proc. Natl. Acad. Sci. USA 108, 8200-8205.   DOI   ScienceOn
14 Pan, H.Y., Zhang, Y.J., Wang, X.P., Deng, J.H., Zhou, F.C., and Gao, S.J. (2003). Identification of a novel cellular transcriptional repressor interacting with the latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9758-9768.   DOI
15 Park, J.E., Soung, N.K., Johmura, Y., Kang, Y.H., Liao, C., Lee, K.H., Park, C.H., Nicklaus, M.C., and Lee, K.S. (2010). Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci. 67, 1957-1970.   DOI   ScienceOn
16 Qi, W., Tang, Z., and Yu, H. (2006). Phosphorylation- and Polo-Box-dependent Binding of Plk1 to Bub1 Is Required for the Kinetochore Localization of Plk1. Mol. Biol. Cell 17, 3705-3716.   DOI   ScienceOn
17 Takai, N., Hamanaka, R., Yoshimatsu, J., and Miyakawa, I. (2005). Polo-like kinases (Plks) and cancer. Oncogene 24, 287-291.   DOI   ScienceOn
18 Seong, Y.S., Kamijo, K., Lee, J.S., Fernandez, E., Kuriyama, R., Miki, T., and Lee, K.S. (2002). A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282-32293.   DOI   ScienceOn
19 Slevin, L.K., Nye, J., Pinkerton, D.C., Buster, D.W., Rogers, G.C., and Slep, K.C. (2012). The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 20, 1905-1917.   DOI   ScienceOn
20 Soung, N.K., Kang, Y.H., Kim, K., Kamijo, K., Yoon, H., Seong, Y.S., Kuo, Y.L., Miki, T., Kim, S.R., Kuriyama, R., et al. (2006). Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol. Cell. Biol. 26, 8316-8335.   DOI   ScienceOn
21 Soung, N.K., Park, J.E., Yu, L.R., Lee, K.H., Lee, J.M., Bang, J.K., Veenstra, T.D., Rhee, K., and Lee, K.S. (2009). Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev. Cell 16, 539-550.   DOI   ScienceOn
22 Strebhardt, K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643-660.   DOI   ScienceOn
23 Strebhardt, K., and Ullrich, A. (2006). Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321-330.   DOI   ScienceOn
24 Takaki, T., Trenz, K., Costanzo, V., and Petronczki, M. (2008). Pololike kinase 1 reaches beyond mitosis--cytokinesis, DNA damage response, and development. Curr. Opin. Cell Biol. 20, 650-660.   DOI   ScienceOn
25 Yun, S.M., Moulaei, T., Lim, D., Bang, J.K., Park, J.E., Shenoy, S.R., Liu, F., Kang, Y.H., Liao, C., Soung, N.K., et al. (2009). Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat. Struct. Mol. Biol. 16, 876-882.   DOI   ScienceOn
26 van de Weerdt, B.C., and Medema, R.H. (2006). Polo-like kinases: a team in control of the division. Cell Cycle 5, 853-864.   DOI   ScienceOn
27 Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T., and Osada, H. (2004). M-phase kinases induce phospho- dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. USA 101, 4419-4424.   DOI   ScienceOn
28 Xu, J., Shen, C., Wang, T., and Quan, J. (2013). Structural basis for the inhibition of Polo-like kinase 1. Nat. Struct. Mol. Biol. 20, 1047-1053.   DOI   ScienceOn
29 Zhang, X., Chen, Q., Feng, J., Hou, J., Yang, F., Liu, J., Jiang, Q., and Zhang, C. (2009). Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J. Cell Sci. 122, 2240-2251.   DOI   ScienceOn
30 Baumann, C., Korner, R., Hofmann, K., and Nigg, E.A. (2007). PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101-114.   DOI   ScienceOn
31 Archambault, V., and Glover, D.M. (2009). Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265-275.   DOI   ScienceOn
32 Arnaud, L., Pines, J., and Nigg, E.A. (1998). GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107, 424-429.   DOI   ScienceOn
33 de Carcer, G., Escobar, B., Higuero, A.M., Garcia, L., Anson, A., Perez, G., Mollejo, M., Manning, G., Melendez, B., Abad-Rodriguez, J., et al. (2011a). Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol. Cell. Biol. 31, 1225-1239.   DOI   ScienceOn
34 Barr, F.A., Sillje, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429-440.
35 Carman, G.M., Deems, R.A., and Dennis, E.A. (1995). Lipid signaling enzymes and surface dilution kinetics. J. Biol. Chem. 270, 18711-18714.   DOI   ScienceOn
36 Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A., and Johnson, L.N. (2003). The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757-5768.   DOI   ScienceOn
37 Elowe, S., Hummer, S., Uldschmid, A., Li, X., and Nigg, E.A. (2007). Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205-2219.   DOI   ScienceOn
38 de Carcer, G., Manning, G., and Malumbres, M. (2011b). From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10, 2255-2262.   DOI
39 Elia, A.E., Cantley, L.C., and Yaffe, M.B. (2003a). Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228-1231.   DOI   ScienceOn
40 Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J., and Yaffe, M.B. (2003b). The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83-95.   DOI   ScienceOn
41 Hanisch, A., Wehner, A., Nigg, E.A., and Sillje, H.H. (2006). Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448-459.
42 Fu, Z., Malureanu, L., Huang, J., Wang, W., Li, H., van Deursen, J.M., Tindal, D.J., and Chen, J. (2008). Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat. Cell Biol. 10, 1076-1082.   DOI   ScienceOn
43 Garcia-Alvarez, B., de Carcer, G., Ibanez, S., Bragado-Nilsson, E., and Montoya, G. (2007). Molecular and structural basis of pololike kinase 1 substrate recognition: implications in centrosomal localization. Proc. Natl. Acad. Sci. USA 104, 3107-3112.   DOI   ScienceOn
44 Golsteyn, R.M., Mundt, K.E., Fry, A.M., and Nigg, E.A. (1995). Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol. 129, 1617-1628.   DOI   ScienceOn
45 Kang, Y.H., Park, J.-E., Yu, L.-R., Soung, N.-K., Yun, S.-M., Bang, J.K., Seong, Y.S., Yu, H., Veenstra, T.D., and Lee, K.S. (2006). Self-regulation of Plk1 recruitment to the kinetochores is critical for chromosome congression and spindle checkpoint signaling. Mol. Cell 24, 409-422.   DOI   ScienceOn
46 Hanissian, S.H., Akbar, U., Teng, B., Janjetovic, Z., Hoffmann, A., Hitzler, J.K., Iscove, N., Hamre, K., Du, X., Tong, Y., et al. (2004). cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 23, 3700-3707.   DOI   ScienceOn
47 Johmura, Y., Soung, N.K., Park, J.E., Yu, L.R., Zhou, M., Bang, J.K., Kim, B.Y., Veenstra, T.D., Erikson, R.L., and Lee, K.S. (2011). Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc. Natl. Acad. Sci. USA 108, 11446-11451.   DOI   ScienceOn
48 Park, J.-E., Li, L., Park, J., Knecht, R., Strebhardt, K., Yuspa, S.H., and Lee, K.S. (2009). Direct quantification of polo-like kinase 1 activity in cells and tissues using a highly sensitive and specific ELISA assay. Proc. Natl. Acad. Sci. USA 106, 1725-1730.   DOI   ScienceOn
49 Clay, F.J., McEwen, S.J., Bertoncello, I., Wilks, A.F., and Dunn, A.R. (1993). Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene of Drosophila. Proc. Natl. Acad. Sci. USA 90, 4882-4886.   DOI   ScienceOn
50 Jang, Y.J., Lin, C.Y., Ma, S., and Erikson, R.L. (2002). Functional studies on the role of the C-terminal domain of mammalian pololike kinase. Proc. Natl. Acad. Sci. USA 99, 1984-1989.   DOI   ScienceOn