• Title/Summary/Keyword: Cellular immune

Search Result 793, Processing Time 0.021 seconds

Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System

  • Yoo, Hyun Jung;Kim, Na Young;Kim, Ji Hyung
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.310-317
    • /
    • 2021
  • Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.

Fermented Colostrum Whey Upregulates Aquaporin-3 Expression in, and Proliferation of, Keratinocytes via p38/c-Jun N-Terminal Kinase Activation

  • Seo, Sang-Ah;Park, Hyun-Jung;Han, Min-Gi;Lee, Ran;Kim, Ji-Soo;Park, Ji-Hoo;Lee, Won-Young;Song, Hyuk
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.749-762
    • /
    • 2021
  • Colostrum, which contains various immune and growth factors, aids wound healing by promoting keratinocyte proliferation. Aquaporins (AQPs) are small, hydrophobic membrane proteins that regulate cellular water retention. However, few studies have examined the effect of processed colostrum whey on AQP-3 expression in human skin cells. Here, we investigated the effect of milk, colostrum, fermented milk, and fermented colostrum whey on AQP-3 expression in keratinocyte HaCaT cells. Concentrations of 100-400 ㎍/mL of fermented colostrum whey were found to induce HaCaT cell proliferation. AQP-3 was found to be expressed exclusively in HaCaT cells. AQP-3 expression was significantly increased in 100 ㎍/mL fermented colostrum whey-treated cells compared with that in controls. Moreover, fermented colostrum increased p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation, but not ERK1/2 phosphorylation. Thus, our results suggest that fermented colostrum whey increased AQP-3 expression in, and the proliferation of, keratinocytes via JNK and p38 MAPK activation.

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Long non-coding RNAs in Sus scrofa ileum under starvation stress

  • Wang, Shu;Ma, Yi Jia;Li, Yong Shi;Ge, Xu Sheng;Lu, Chang;Cai, Chun Bo;Yang, Yang;Zhao, Yan;Liang, Guo Ming;Guo, Xiao Hong;Cao, Guo Qing;Li, Bu Gao;Gao, Peng Fei
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.975-988
    • /
    • 2022
  • Objective: In this study, we aimed to identify long non-coding RNAs (lncRNAs) that play important roles in starvation stress, analyze their functions, and discover potential molecular targets to alleviate starvation stress to provide a theoretical reference for subsequent in-depth research. Methods: We generated a piglet starvation stress animal model. Nine Yorkshire weaned piglets were randomly divided into a long-term starvation stress group (starved for 72 h), short-term starvation stress group (starved for 48 h), and the control group. LncRNA libraries were constructed using high-throughput sequencing of piglet ileums. Results: We obtained 11,792 lncRNAs, among which, 2,500 lncRNAs were novel. In total, 509 differentially expressed (DE)lncRNAs were identified in this study. Target genes of DElncRNAs were predicted via cis and trans interactions, and functional and pathway analyses were performed. Gene ontology functions and Kyoto encyclopedia of genes and genomes analysis revealed that lncRNA-targeted genes mainly participated in metabolic pathways, cellular processes, immune system processes, digestive systems, and transport activities. To reveal the mechanism underlying starvation stress, the interaction network between lncRNAs and their targets was constructed based on 26 DElncRNAs and 72 DEmRNAs. We performed an interaction network analysis of 121 DElncRNA-DEmRNA pairs with a Pearson correlation coefficient greater than 0.99. Conclusion: We found that MSTRG.19894.13, MSTRG.16726.3, and MSTRG.12176.1 might play important roles in starvation stress. This study not only generated a library of enriched lncRNAs in piglets, but its outcomes also provide a strong foundation to screen key lncRNAs involved in starvation stress and a reference for subsequent in-depth research.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Hypoxia-Inducible Factor-1 Alpha Stabilization in Human Macrophages during Leishmania major Infection Is Impaired by Parasite Virulence

  • Ben-Cheikh, Ali;Bali, Aymen;Guerfali, Fatma Z;Atri, Chiraz;Attia, Hanene;Laouini, Dhafer
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.317-325
    • /
    • 2022
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.

A systemic study on the vulnerability and fatality of prostate cancer patients towards COVID-19 through analysis of the TMPRSS2, CXCL10 and their co-expressed genes

  • Raza, Md. Thosif;Mizan, Shagufta
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.31.1-31.15
    • /
    • 2022
  • A pandemic of respiratory disease named coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is reported prostate cancer patients are susceptible to COVID-19 infection. To understand the possible causes of prostate cancer patients' increased vulnerability and mortality from COVID-19 infection, we focused on the two most important agents, transmembrane protease serine subtype 2 (TMPRSS2) and the C-X-C motif 10 (CXCL10). When SARS-CoV-2 binds to the host cell via S protein-angiotensin-converting enzyme-2 receptor interaction, TMPRSS2 contributes in the proteolytic cleavage of the S protein, allowing the viral and cellular membranes to fuse. CXCL10 is a cytokine found in elevated level in both COVID-19 and cancer-causing cytokine storm. We discovered that TMPRSS2 and CXCL10 are overexpressed in prostate cancer and COVID-19 using the UALCAN and GEPIA2 datasets. The functional importance of TMPRSS2 and CXCL10 in prostate cancer development was then determined by analyzing the frequency of genetic changes in their amino acid sequences using the cBioPortal online portal. Finally, we used the PANTHER database to examine the pathology of the targeted genes. We observed that TMPRSS2 and CXCL10, together with their often co-expressed genes, are important in the binding activity and immune responses in prostate cancer and COVID-19 infection, respectively. Finally, we found that TMPRSS2 and CXCL10 are two putative biomarkers responsible for the increased vulnerability and fatality of prostate cancer patients to COVID-19.

Effect of LPS and melatonin on early development of mouse embryo

  • Park, Haeun;Jang, Hoon;Choi, Youngsok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.

Effect of a PI3K inhibitor LY294002 on cell migration (세포 이동에서 PI3K 억제제인 LY294002의 효과)

  • Kim, Wonbum;Jeon, Taeck Joong
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.131-136
    • /
    • 2022
  • Cell migration is essential for diverse cellular processes including wound healing, immune response, development, and cancer metastasis. Pi3-kinase (PI3K) is a key regulator for actin cytoskeleton and phosphorylates phosphatidylinositol (4,5)-diphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). High levels of PIP3 by PI3Ks are associated with increased levels of F-actin and pseudopod extension at the leading edge of migrating cells such as neutrophils and Dictyostelium. LY294002 is a well-known PI3K specific inhibitor. Here, we investigated the effect of LY294002 on cell migration. First, we evaluated the appropriate concentration of dimethyl sulfoxide (DMSO) for using as a solvent for LY294002. DMSO is a highly polar organic reagent and one of the most common solvent for organic and inorganic chemicals. Cell morphology and cell migration were unaffected at the concentrations less than 0.1 % DMSO. Therefore, stock solution of LY294002 was prepared so that the final concentration of DMSO was 0.1 % or less when treated. When cells were treated with LY294002, cell migration was increased in a concentration-dependent manner. The maximum speed was detected in the presence of 30 µM LY294002. These results suggest that PI3Ks play a inhibitory role in regulating cell migration in our experimental conditions.

Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages

  • Lee, Eunju;Eo, Jun-Cheol;Lee, Changjun;Yu, Je-Wook
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.