Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0059

Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System  

Yoo, Hyun Jung (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Na Young (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Ji Hyung (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Abstract
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.
Keywords
CD1 molecules; CD1a; inflammatory skin diseases; lipid antigens; lipid-reactive T cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Facciotti, F., Cavallari, M., Angenieux, C., Garcia-Alles, L.F., Signorino-Gelo, F., Angman, L., Gilleron, M., Prandi, J., Puzo, G., Panza, L., et al. (2011). Fine tuning by human CD1e of lipid-specific immune responses. Proc. Natl. Acad. Sci. U. S. A. 108, 14228-14233.   DOI
2 Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Schmidt, R.R., Jones, E.Y., and Cerundolo, V. (2002). Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721-726.   DOI
3 Zajonc, D.M., Crispin, M.D., Bowden, T.A., Young, D.C., Cheng, T.Y., Hu, J., Costello, C.E., Rudd, P.M., Dwek, R.A., Miller, M.J., et al. (2005). Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22, 209-219.   DOI
4 Akbari, O., Stock, P., Meyer, E., Kronenberg, M., Sidobre, S., Nakayama, T., Taniguchi, M., Grusby, M.J., DeKruyff, R.H., and Umetsu, D.T. (2003). Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582-588.   DOI
5 Corbett, A.J., Eckle, S.B., Birkinshaw, R.W., Liu, L., Patel, O., Mahony, J., Chen, Z., Reantragoon, R., Meehan, B., Cao, H., et al. (2014). T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361-365.   DOI
6 Gamerdinger, K., Moulon, C., Karp, D.R., Van Bergen, J., Koning, F., Wild, D., Pflugfelder, U., and Weltzien, H.U. (2003). A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J. Exp. Med. 197, 1345-1353.   DOI
7 Han, M., Hannick, L.I., DiBrino, M., and Robinson, M.A. (1999). Polymorphism of human CD1 genes. Tissue Antigens 54, 122-127.   DOI
8 Hardman, C.S., Chen, Y.L., Salimi, M., Jarrett, R., Johnson, D., Jarvinen, V.J., Owens, R.J., Repapi, E., Cousins, D.J., Barlow, J.L., et al. (2017). CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci. Immunol. 2, eaan5918.   DOI
9 Jarrett, R., Salio, M., Lloyd-Lavery, A., Subramaniam, S., Bourgeois, E., Archer, C., Cheung, K.L., Hardman, C., Chandler, D., Salimi, M., et al. (2016). Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci. Transl. Med. 8, 325ra318.
10 Zajonc, D.M., Elsliger, M.A., Teyton, L., and Wilson, I.A. (2003). Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808-815.   DOI
11 Angenieux, C., Salamero, J., Fricker, D., Cazenave, J.P., Goud, B., Hanau, D., and de La Salle, H. (2000). Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J. Biol. Chem. 275, 37757-37764.   DOI
12 Balato, A., Lembo, S., Mattii, M., Schiattarella, M., Marino, R., De Paulis, A., Balato, N., and Ayala, F. (2012). IL-33 is secreted by psoriatic keratinocytes and induces pro-inflammatory cytokines via keratinocyte and mast cell activation. Exp. Dermatol. 21, 892-894.   DOI
13 Barral, D.C., Cavallari, M., McCormick, P.J., Garg, S., Magee, A.I., Bonifacino, J.S., De Libero, G., and Brenner, M.B. (2008). CD1a and MHC class I follow a similar endocytic recycling pathway. Traffic 9, 1446-1457.   DOI
14 Radwan, J., Babik, W., Kaufman, J., Lenz, T.L., and Winternitz, J. (2020). Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36, 298-311.   DOI
15 Sharma, M., Zhang, X., Zhang, S., Niu, L., Ho, S.M., Chen, A., and Huang, S. (2017). Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants. Sci. Rep. 7, 2085.   DOI
16 Visvabharathy, L., Genardi, S., Cao, L., He, Y., Alonzo, F., 3rd, Berdyshev, E., and Wang, C.R. (2020). Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog. 16, e1008443.   DOI
17 Beckman, E.M., Porcelli, S.A., Morita, C.T., Behar, S.M., Furlong, S.T., and Brenner, M.B. (1994). Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691-694.   DOI
18 Agea, E., Russano, A., Bistoni, O., Mannucci, R., Nicoletti, I., Corazzi, L., Postle, A.D., De Libero, G., Porcelli, S.A., and Spinozzi, F. (2005). Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202, 295-308.   DOI
19 Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A.J., and Soler, P. (1993). Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J. Clin. Invest. 91, 566-576.   DOI
20 Porcelli, S., Brenner, M.B., Greenstein, J.L., Balk, S.P., Terhorst, C., and Bleicher, P.A. (1989). Recognition of cluster of differentiation 1 antigens by human CD4-CD8- cytolytic T lymphocytes. Nature 341, 447-450.   DOI
21 Raftery, M.J., Hitzler, M., Winau, F., Giese, T., Plachter, B., Kaufmann, S.H., and Schonrich, G. (2008). Inhibition of CD1 antigen presentation by human cytomegalovirus. J. Virol. 82, 4308-4319.   DOI
22 Rosat, J.P., Grant, E.P., Beckman, E.M., Dascher, C.C., Sieling, P.A., Frederique, D., Modlin, R.L., Porcelli, S.A., Furlong, S.T., and Brenner, M.B. (1999). CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol. 162, 366-371.
23 Salimi, M., Barlow, J.L., Saunders, S.P., Xue, L., Gutowska-Owsiak, D., Wang, X., Huang, L.C., Johnson, D., Scanlon, S.T., McKenzie, A.N., et al. (2013). A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939-2950.   DOI
24 Kim, J.H., Hu, Y., Yongqing, T., Kim, J., Hughes, V.A., Le Nours, J., Marquez, E.A., Purcell, A.W., Wan, Q., Sugita, M., et al. (2016). CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17, 1159-1166.   DOI
25 Sieling, P.A., Torrelles, J.B., Stenger, S., Chung, W., Burdick, A.E., Rea, T.H., Brennan, P.J., Belisle, J.T., Porcelli, S.A., and Modlin, R.L. (2005). The human CD1-restricted T cell repertoire is limited to cross-reactive antigens: implications for host responses against immunologically related pathogens. J. Immunol. 174, 2637-2644.   DOI
26 Scharf, L., Li, N.S., Hawk, A.J., Garzon, D., Zhang, T., Fox, L.M., Kazen, A.R., Shah, S., Haddadian, E.J., Gumperz, J.E., et al. (2010). The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33, 853-862.   DOI
27 Schnellhardt, S., Erber, R., Buttner-Herold, M., Rosahl, M.C., Ott, O.J., Strnad, V., Beckmann, M.W., King, L., Hartmann, A., Fietkau, R., et al. (2020). Tumour-infiltrating inflammatory cells in early breast cancer: an underrated prognostic and predictive factor? Int. J. Mol. Sci. 21, 8238.   DOI
28 Suzuki, A., Masuda, A., Nagata, H., Kameoka, S., Kikawada, Y., Yamakawa, M., and Kasajima, T. (2002). Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J. Pathol. 196, 37-43.   DOI
29 Zeng, Z., Castano, A.R., Segelke, B.W., Stura, E.A., Peterson, P.A., and Wilson, I.A. (1997). Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277, 339-345.   DOI
30 Baharom, F., Thomas, S., Rankin, G., Lepzien, R., Pourazar, J., Behndig, A.F., Ahlm, C., Blomberg, A., and Smed-Sorensen, A. (2016). Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans. J. Immunol. 196, 4498-4509.   DOI
31 Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, M.R., Zajonc, D.M., Ben-Menachem, G., Ainge, G.D., Painter, G.F., et al. (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978-986.   DOI
32 Kjer-Nielsen, L., Patel, O., Corbett, A.J., Le Nours, J., Meehan, B., Liu, L., Bhati, M., Chen, Z., Kostenko, L., Reantragoon, R., et al. (2012). MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717-723.   DOI
33 Lepore, M., de Lalla, C., Gundimeda, S.R., Gsellinger, H., Consonni, M., Garavaglia, C., Sansano, S., Piccolo, F., Scelfo, A., Haussinger, D., et al. (2014). A novel self-lipid antigen targets human T cells against CD1c+ leukemias. J. Exp. Med. 211, 1363-1377.   DOI
34 Matsuda, J.L., Naidenko, O.V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C.R., Koezuka, Y., and Kronenberg, M. (2000). Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741-754.   DOI
35 Miller, C.J., McChesney, M., and Moore, P.F. (1992). Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques. Lab. Invest. 67, 628-634.
36 Moody, D.B., Young, D.C., Cheng, T.Y., Rosat, J.P., Roura-Mir, C., O'Connor, P.B., Zajonc, D.M., Walz, A., Miller, M.J., Levery, S.B., et al. (2004). T cell activation by lipopeptide antigens. Science 303, 527-531.   DOI
37 Sugita, M., Cao, X., Watts, G.F., Rogers, R.A., Bonifacino, J.S., and Brenner, M.B. (2002). Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697-706.   DOI
38 Nicolai, S., Wegrecki, M., Cheng, T.Y., Bourgeois, E.A., Cotton, R.N., Mayfield, J.A., Monnot, G.C., Le Nours, J., Van Rhijn, I., Rossjohn, J., et al. (2020). Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Sci. Immunol. 5, eaax5430.   DOI
39 Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P.S., Wang, X.N., Malinarich, F., Malleret, B., et al. (2012). Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60-73.   DOI
40 Yoshida, A., Imayama, S., Sugai, S., Kawano, Y., and Ishibashi, T. (1997). Increased number of IgE positive Langerhans cells in the conjunctiva of patients with atopic dermatitis. Br. J. Ophthalmol. 81, 402-406.   DOI
41 Sugita, M., Grant, E.P., van Donselaar, E., Hsu, V.W., Rogers, R.A., Peters, P.J., and Brenner, M.B. (1999). Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743-752.   DOI
42 Sugita, M., Porcelli, S.A., and Brenner, M.B. (1997). Assembly and retention of CD1b heavy chains in the endoplasmic reticulum. J. Immunol. 159, 2358-2365.
43 Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J., and Brenner, M.B. (2000). CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. U. S. A. 97, 8445-8450.   DOI
44 Vasquez, A.M., Mouchlis, V.D., and Dennis, E.A. (2018). Review of four major distinct types of human phospholipase A2. Adv. Biol. Regul. 67, 212-218.   DOI
45 Vocanson, M., Hennino, A., Rozieres, A., Poyet, G., and Nicolas, J.F. (2009). Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64, 1699-1714.   DOI
46 Subramaniam, S., Aslam, A., Misbah, S.A., Salio, M., Cerundolo, V., Moody, D.B., and Ogg, G. (2016). Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur. J. Immunol. 46, 242-252.   DOI
47 Bourgeois, E.A., Subramaniam, S., Cheng, T.Y., De Jong, A., Layre, E., Ly, D., Salimi, M., Legaspi, A., Modlin, R.L., Salio, M., et al. (2015). Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212, 149-163.   DOI
48 Wollenberg, A., Kraft, S., Hanau, D., and Bieber, T. (1996). Immuno-morphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Invest. Dermatol. 106, 446-453.   DOI
49 Bertorelli, G., Bocchino, V., Zhou, X., Zanini, A., Bernini, M.V., Damia, R., Di Comite, V., Grima, P., and Olivieri, D. (2000). Dendritic cell number is related to IL-4 expression in the airways of atopic asthmatic subjects. Allergy 55, 449-454.   DOI
50 Betts, R.J., Perkovic, A., Mahapatra, S., Del Bufalo, A., Camara, K., Howell, A.R., Martinozzi Teissier, S., De Libero, G., and Mori, L. (2017). Contact sensitizers trigger human CD1-autoreactive T-cell responses. Eur. J. Immunol. 47, 1171-1180.   DOI
51 Briken, V., Jackman, R.M., Watts, G.F., Rogers, R.A., and Porcelli, S.A. (2000). Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281-288.   DOI
52 Manolova, V., Kistowska, M., Paoletti, S., Baltariu, G.M., Bausinger, H., Hanau, D., Mori, L., and De Libero, G. (2006). Functional CD1a is stabilized by exogenous lipids. Eur. J. Immunol. 36, 1083-1092.   DOI
53 Briken, V., Jackman, R.M., Dasgupta, S., Hoening, S., and Porcelli, S.A. (2002). Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J. 21, 825-834.   DOI
54 Benlagha, K., Weiss, A., Beavis, A., Teyton, L., and Bendelac, A. (2000). In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895-1903.   DOI
55 Cotton, R.N., Cheng, T.Y., Wegrecki, M., Le Nours, J., Orgill, D.P., Pomahac, B., Talbot, S.G., Willis, R.A., Altman, J.D., de Jong, A., et al. (2021). Human skin is colonized by T cells that recognize CD1a independently of lipid. J. Clin. Invest. 131, e140706.   DOI
56 de Jong, A., Cheng, T.Y., Huang, S., Gras, S., Birkinshaw, R.W., Kasmar, A.G., Van Rhijn, I., Pena-Cruz, V., Ruan, D.T., Altman, J.D., et al. (2014). CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15, 177-185.   DOI
57 de Jong, A., Pena-Cruz, V., Cheng, T.Y., Clark, R.A., Van Rhijn, I., and Moody, D.B. (2010). CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102-1109.   DOI
58 Kagami, S., Rizzo, H.L., Lee, J.J., Koguchi, Y., and Blauvelt, A. (2010). Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Invest. Dermatol. 130, 1373-1383.   DOI
59 Kai, K., Tanaka, T., Ide, T., Kawaguchi, A., Noshiro, H., and Aishima, S. (2021). Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Transl. Oncol. 14, 100923.   DOI
60 Kaplan, D.H., Igyarto, B.Z., and Gaspari, A.A. (2012). Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12, 114-124.   DOI
61 Calabi, F., Jarvis, J.M., Martin, L., and Milstein, C. (1989). Two classes of CD1 genes. Eur. J. Immunol. 19, 285-292.   DOI
62 Carbone, F.R. and Gleeson, P.A. (1997). Carbohydrates and antigen recognition by T cells. Glycobiology 7, 725-730.   DOI
63 Cheung, K.L., Jarrett, R., Subramaniam, S., Salimi, M., Gutowska-Owsiak, D., Chen, Y.L., Hardman, C., Xue, L., Cerundolo, V., and Ogg, G. (2016). Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med. 213, 2399-2412.   DOI
64 de Lalla, C., Lepore, M., Piccolo, F.M., Rinaldi, A., Scelfo, A., Garavaglia, C., Mori, L., De Libero, G., Dellabona, P., and Casorati, G. (2011). High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41, 602-610.   DOI
65 Seshadri, C., Shenoy, M., Wells, R.D., Hensley-McBain, T., Andersen-Nissen, E., McElrath, M.J., Cheng, T.Y., Moody, D.B., and Hawn, T.R. (2013). Human CD1a deficiency is common and genetically regulated. J. Immunol. 191, 1586-1593.   DOI
66 Kasmar, A.G., Van Rhijn, I., Magalhaes, K.G., Young, D.C., Cheng, T.Y., Turner, M.T., Schiefner, A., Kalathur, R.C., Wilson, I.A., Bhati, M., et al. (2013). Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J. Immunol. 191, 4499-4503.   DOI
67 Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., et al. (1997). CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626-1629.   DOI
68 Shamshiev, A., Gober, H.J., Donda, A., Mazorra, Z., Mori, L., and De Libero, G. (2002). Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013-1021.   DOI
69 Birkinshaw, R.W., Pellicci, D.G., Cheng, T.Y., Keller, A.N., Sandoval-Romero, M., Gras, S., de Jong, A., Uldrich, A.P., Moody, D.B., Godfrey, D.I., et al. (2015). αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol. 16, 258-266.   DOI
70 Cernadas, M., Cavallari, M., Watts, G., Mori, L., De Libero, G., and Brenner, M.B. (2010). Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens. J. Immunol. 184, 1235-1241.   DOI
71 Nestle, F.O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y.J., and Gilliet, M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135-143.   DOI
72 Sandel, M.H., Dadabayev, A.R., Menon, A.G., Morreau, H., Melief, C.J., Offringa, R., van der Burg, S.H., Janssen-van Rhijn, C.M., Ensink, N.G., Tollenaar, R.A., et al. (2005). Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin. Cancer Res. 11, 2576-2582.   DOI
73 Park, S.H., Weiss, A., Benlagha, K., Kyin, T., Teyton, L., and Bendelac, A. (2001). The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893-904.   DOI