Browse > Article
http://dx.doi.org/10.12750/JARB.37.3.183

Effect of LPS and melatonin on early development of mouse embryo  

Park, Haeun (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Jang, Hoon (Department of Life Sciences, Jeonbuk National University)
Choi, Youngsok (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.37, no.3, 2022 , pp. 183-192 More about this Journal
Abstract
Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.
Keywords
embryo development; lipopolysaccharide; melatonin; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi EY, Jin JY, Lee JY, Choi JI, Choi IS, Kim SJ. 2011. Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-κB and STAT1 activity. J. Pineal Res. 50:197-206.
2 Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, Zeng SM, Tian JH, Liu GS. 2009. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J. Pineal Res. 47:318-323.   DOI
3 Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebesteny T, Maronde E. 2011. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 51:17-43.   DOI
4 Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, Takasaki A, Reiter RJ, Sugino N. 2020. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci. 21:1135.   DOI
5 Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, Taketani T, Matsuoka A, Yamagata Y, Shimamura K, Morioka H, Ishikawa H, Reiter RJ, Sugino N. 2008. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 44:280-287.   DOI
6 Tarkowski AK. 1959. Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286-1287.   DOI
7 Tian X, Wang F, Zhang L, Ji P, Wang J, Lv D, Li G, Chai M, Lian Z, Liu G. 2017. Melatonin promotes the in vitro development of microinjected pronuclear mouse embryos via its antioxidative and anti-apoptotic effects. Int. J. Mol. Sci. 18:988.   DOI
8 Bromfield JJ and Sheldon IM. 2013. Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biol. Reprod. 88:98.
9 Chatterjee N and Walker GC. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58:235-263.   DOI
10 Tobias PS, Soldau K, Ulevitch RJ. 1989. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J. Biol. Chem. 264:10867-10871.   DOI
11 Tough DF, Sun S, Sprent J. 1997. T cell stimulation in vivo by lipopolysaccharide (LPS). J. Exp. Med. 185:2089-2094.   DOI
12 Truong T and Gardner DK. 2017. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum. Reprod. 32:2404-2413.   DOI
13 Ziomek CA and Johnson MH. 1980. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935-942.   DOI
14 Truong TT, Soh YM, Gardner DK. 2016. Antioxidants improve mouse preimplantation embryo development and viability. Hum. Reprod. 31:1445-1454.   DOI
15 Wang F, Tian X, Zhang L, Tan D, Reiter RJ, Liu G. 2013. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J. Pineal Res. 55:267-274.   DOI
16 Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. 2006. Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol. Lett. 163:20-29.   DOI
17 Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13:998-1002.   DOI
18 Yang M, Tao J, Chai M, Wu H, Wang J, Li G, He C, Xie L, Ji P, Dai Y, Yang L, Liu G. 2017. Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development: mechanisms and results. Molecules 22:2059.   DOI
19 Jacob AI, Goldberg PK, Bloom N, Degenshein GA, Kozinn PJ. 1977. Endotoxin and bacteria in portal blood. Gastroenterology 72:1268-1270.   DOI
20 He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, Ji P, Liu G. 2016. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte's quality under in vitro conditions. Int. J. Mol. Sci. 17:939.   DOI
21 Jaiswal YK, Jaiswal MK, Agrawal V, Chaturvedi MM. 2009. Bacterial endotoxin (LPS)-induced DNA damage in preimplanting embryonic and uterine cells inhibits implantation. Fertil. Steril. 91(5 Suppl):2095-2103.   DOI
22 Jang H, Hong K, Choi Y. 2017. Melatonin and fertoprotective adjuvants: prevention against premature ovarian failure during chemotherapy. Int. J. Mol. Sci. 18:1221.   DOI
23 Kuwabara T and Imajoh-Ohmi S. 2004. LPS-induced apoptosis is dependent upon mitochondrial dysfunction. Apoptosis 9:467-474.   DOI
24 Lane M and Gardner DK. 2007. Embryo culture medium: which is the best? Best Pract. Res. Clin. Obstet. Gynaecol. 21:83-100.   DOI
25 Zhou Y, Chen YH, Fu L, Yu Z, Xia MZ, Hu XG, Wang H, Xu DX. 2017. Vitamin D3 pretreatment protects against lipopolysaccharide-induced early embryo loss through its anti-inflammatory effects. Am. J. Reprod. Immunol. 77:e12620.   DOI
26 Yu GM and Tan W. 2019. Melatonin inhibits lipopolysaccharide-induced inflammation and oxidative stress in cultured mouse mammary tissue. Mediators Inflamm. 2019:8597159.
27 Zeng F and Schultz RM. 2005. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev. Biol. 283:40-57.   DOI
28 Zhao SJ, Pang YW, Zhao XM, Du WH, Hao HS, Zhu HB. 2017. Effects of lipopolysaccharide on maturation of bovine oocyte in vitro and its possible mechanisms. Oncotarget 8:4656-4667.   DOI
29 Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. 2008. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44:1295-1304.   DOI
30 Hansen PJ and Block J. 2004. Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reprod. Fertil. Dev. 16:1-14.   DOI
31 Ighodaro OM and Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54:287-293.
32 Ishizuka B, Kuribayashi Y, Murai K, Amemiya A, Itoh MT. 2000. The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 28:48-51.   DOI
33 Lindner GM and Wright Jr. RW. 1983. Bovine embryo morphology and evaluation. Theriogenology 20:407-416.   DOI
34 Li L, Zheng P, Dean J. 2010. Maternal control of early mouse development. Development 137:859-870.   DOI
35 Leazer TM, Barbee B, Ebron-McCoy M, Henry-Sam GA, Rogers JM. 2002. Role of the maternal acute phase response and tumor necrosis factor alpha in the developmental toxicity of lipopolysaccharide in the CD-1 mouse. Reprod. Toxicol. 16:173-179.   DOI
36 Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80:2587.
37 Levy R. 2001. Genetic regulation of preimplantation embryo survival. Int. Rev. Cytol. 210:1-37.   DOI
38 Mahdavinezhad F, Kazemi P, Fathalizadeh P, Sarmadi F, Sotoodeh L, Hashemi E, Hajarian H, Dashtizad M. 2019. In vitro versus in vivo: development-, apoptosis-, and implantation-related gene expression in mouse blastocyst. Iran. J. Biotechnol. 17:e2157.
39 Mihajlovic AI and Bruce AW. 2017. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol. 7:170210.   DOI
40 Goto Y, Noda Y, Mori T, Nakano M. 1993. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15:69-75.   DOI
41 Batioglu AS, Sahin U, Gurlek B, Ozturk N, Unsal E. 2012. The efficacy of melatonin administration on oocyte quality. Gynecol. Endocrinol. 28:91-93.   DOI
42 Magata F, Horiuchi M, Echizenya R, Miura R, Chiba S, Matsui M, Miyamoto A, Kobayashi Y, Shimizu T. 2014. Lipopolysaccharide in ovarian follicular fluid influences the steroid production in large follicles of dairy cows. Anim. Reprod. Sci. 144:6-13.   DOI
43 Marrs RP, Saito H, Yee B, Sato F, Brown J. 1984. Effect of variation of in vitro culture techniques upon oocyte fertilization and embryo development in human in vitro fertilization procedures. Fertil. Steril. 41:519-523.   DOI
44 Mayo JC, Sainz RM, Antoli I, Herrera F, Martin V, Rodriguez C. 2002. Melatonin regulation of antioxidant enzyme gene expression. Cell. Mol. Life Sci. 59:1706-1713.   DOI
45 Bidne KL, Dickson MJ, Ross JW, Baumgard LH, Keating AF. 2018. Disruption of female reproductive function by endotoxins. Reproduction 155:R169-R181.   DOI
46 Cavaillon JM. 2018. Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 149:45-53.   DOI
47 Cebral E, Carrasco I, Vantman D, Smith R. 2007. Preimplantation embryotoxicity after mouse embryo exposition to reactive oxygen species. Biocell 31:51-59.   DOI
48 Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615-624.   DOI
49 Chen YH, Xu DX, Wang JP, Wang H, Wei LZ, Sun MF, Wei W. 2006. Melatonin protects against lipopolysaccharide-induced intra-uterine fetal death and growth retardation in mice. J. Pineal Res. 40:40-47.   DOI
50 Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. 2004. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online 9:409-417.   DOI
51 Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. 1994. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 55:PL271-PL276.
52 Eryilmaz OG, Devran A, Sarikaya E, Aksakal FN, Mollamahmutoglu L, Cicek N. 2011. Melatonin improves the oocyte and the embryo in IVF patients with sleep disturbances, but does not improve the sleeping problems. J. Assist. Reprod. Genet. 28:815-820.   DOI
53 Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. 2018. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122:877-902.   DOI
54 Barnes PJ. 1997. Nuclear factor-kappa B. Int. J. Biochem. Cell Biol. 29:867-870.   DOI
55 Quinn P, Warnes GM, Kerin JF, Kirby C. 1985. Culture factors affecting the success rate of in vitro fertilization and embryo transfer. Ann. N. Y. Acad. Sci. 442:195-204.   DOI
56 Raetz CR and Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635-700.   DOI
57 Richter KS. 2008. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr. Opin. Obstet. Gynecol. 20:292-304.   DOI
58 Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutierrez-Adan A. 2008. Consequences of in vitro culture conditions on embryo development and quality. Reprod. Domest. Anim. 43 Suppl 4:44-50.   DOI
59 Moghadam F, Hajian M, Rouhollahi Varnosfaderani S, Jafarpour F, Nasr Esfahani MH. 2021. Effect of rosiglitazone on developmental competence of mouse embryos treated with lipopolysaccharide. Theriogenology 161:57-64.   DOI
60 Mokhtari S, Mahdavi AH, Hajian M, Kowsar R, Varnosfaderani SR, Nasr-Esfahani MH. 2020. The attenuation of the toxic effects of LPS on mouse pre-implantation development by alpha-lipoic acid. Theriogenology 143:139-147.   DOI
61 Rizos D, Maillo V, Sanchez-Calabuig MJ, Lonergan P. 2017. The consequences of maternal-embryonic cross talk during the periconception period on subsequent embryonic development. Adv. Exp. Med. Biol. 1014:69-86.   DOI
62 Rossant J. 1976. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36:283-290.
63 Ronnberg L, Kauppila A, Leppaluoto J, Martikainen H, Vakkuri O. 1990. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J. Clin. Endocrinol. Metab. 71:492-496.
64 Sharma RK and Agarwal A. 2004. Role of reactive oxygen species in gynecologic diseases. Reprod. Med. Biol. 3:177-199.   DOI
65 Pabon Jr. JE, Findley WE, Gibbons WE. 1989. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 51:896-900.   DOI