• Title/Summary/Keyword: Cellular imaging

Search Result 180, Processing Time 0.027 seconds

Robust and Secure InIm-based 3D Watermarking Scheme using Cellular Automata Transform (셀룰러 오토마타 변환을 이용한 집적영상 기반의 강인하고 안전한 3D 워터마킹 방법)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1767-1778
    • /
    • 2009
  • A robust and secure InIm(Integral imaging)-based 3D watermarking scheme using cellular automata transform (CAI) is proposed. In the InIm-based 3D watermarking scheme, the elemental image array (EIA) watermark for the target watermark which has to be detected, is synthesized from the computational pickup process of InIm and embedded in a cover image. The EIA watermark can provide a robust reconstruction of the target watermark However, the 3D property of the EIA watermark causes a weakening of the security. To overcome this problem, the proposed method uses the CAT domain to embed and extract the EIA watermark in the cover image. The use of CAT significantly improves the security for our watermarking algorithm using a single secure key only. Experiments are presented to show that the proposed scheme shows robust and secure performances against various attacks.

Construction of Luminescence- and Fluorescence-Tagged Burkholderia pseudomallei for Pathogen Tracking in a Mouse Model

  • Shin, Yong-Woo;Park, Deok Bum;Choi, Myung-Min;Chun, Jeong-Hoon;Seong, Baik-Lin;Rhie, Gi-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.498-502
    • /
    • 2018
  • Molecular imaging is a powerful method for tracking various infectious disease-causing pathogens in host organisms. Currently, a dual molecular imaging method that can provide temporal and spatial information on infected hosts at the organism, organ, tissue, and cellular levels simultaneously has not been reported for Burkholderia pseudomallei, a high-risk pathogen that causes melioidosis. In this study, we have established an experimental method that provides spatiotemporal information on infected hosts using luminescent and fluorescent dual-labeled B. pseudomallei. Using this method, we visualized B. pseudomallei infection at the organism, organ, and tissue levels in a BALB/c mouse model by detecting its luminescence and fluorescence. The infection of B. pseudomallei at the cellular level was also visualized by its emitted fluorescence in infected macrophage cells. This method could be an extremely useful and applicable tool to study the pathogenesis of B. pseudomallei-related infectious diseases.

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Magnetic Resonance Imaging and Pathologic Correlation of Cerebral Fat Embolism using Oleic Acid

  • Park, Byung-Rae
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • To investigate the correlation between the magnetic resonance imaging (MRI) of cerebral fat embolism that is induced by injecting oleic acid into 10 cats, and a pathologic diagnosis. Using a microcatheter, 30 ${mu}ell$ of oleic acid was injected into the internal carotid artery of 10 cats. MR T2-weighted image (T2WI), diffusion-weighted image (DWI) and Gadolinium-enhanced T1-weighted image (Gd-enhanced T1WI) were obtained after 30 minutes and 2 hours of embolization. After 30 minutes of the embolization, lesions of very high signal intensity were detected by T2WI in 6 cats, and of slightly high signal intensity in 2 cats; in the remaining 2 cats, signal intensity was normal. DWI showed lesions of very high intensity in 9 cats and of slightly high intensity in one cat. According to the findings of light microscopic examination, infarcted lesions mainly involved the gray matter, but also some white matter. A magnetic resonance imaging diagnosis for cerebral fat embolism that was induced by oleic acid through the internal carotid artery in cats showed high signal intensity on the T2WI and the DWI within an initial 2 hours, and with a well enhancement on the Gd-enhanced T1WI. Considering cellular edema, cerebrovascular injury and extracellular space widening, we assumed pathologically that cytotoxic and vasogenic edema exists at the same time.

  • PDF

Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging

  • Wu, Szu-Hsien (Sam);Lee, Ji-Hyun;Koo, Bon-Kyoung
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.104-112
    • /
    • 2019
  • Tracking the fate of individual cells and their progeny through lineage tracing has been widely used to investigate various biological processes including embryonic development, homeostatic tissue turnover, and stem cell function in regeneration and disease. Conventional lineage tracing involves the marking of cells either with dyes or nucleoside analogues or genetic marking with fluorescent and/or colorimetric protein reporters. Both are imaging-based approaches that have played a crucial role in the field of developmental biology as well as adult stem cell biology. However, imaging-based lineage tracing approaches are limited by their scalability and the lack of molecular information underlying fate transitions. Recently, computational biology approaches have been combined with diverse tracing methods to overcome these limitations and so provide high-order scalability and a wealth of molecular information. In this review, we will introduce such novel computational methods, starting from single-cell RNA sequencing-based lineage analysis to DNA barcoding or genetic scar analysis. These novel approaches are complementary to conventional imaging-based approaches and enable us to study the lineage relationships of numerous cell types during vertebrate, and in particular human, development and disease.

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Differential Diagnosis of Thick Myocardium according to Histologic Features Revealed by Multiparametric Cardiac Magnetic Resonance Imaging

  • Min Jae Cha;Cherry Kim;Chan Ho Park;Yoo Jin Hong;Jae Min Shin;Tae Hoon Kim;Yoon Jin Cha;Chul Hwan Park
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.581-597
    • /
    • 2022
  • Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete's heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct. This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.

Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide

  • Lee, Ju-Yeon;Yang, Sung-Tae;Kim, Hyo-Jeong;Lee, Seung-Kyu;Jung, Hyun-Ho;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.586-592
    • /
    • 2009
  • The bactenecin is an antibacterial peptide with an intramolecular disulfide bond. We recently found that homodimeric bactenecin exhibits more potent antibacterial activity than the monomeric form and retains its activity at physiological conditions. Here we assess the difference in the modes of antibiotic action of homodimeric and monomeric bactenecins. Both monomeric and dimeric bactenecins almost completely killed both Staphylococcus aureus and E. coli within 10-30 min at concentrations of $8-16\;{\mu}M$. However, exposure to liposomes elicited an increase in the fluorescence quantum yield from a tryptophan-containing monomeric analog, while the homodimeric analog showed a significant reduction in fluorescence intensity. Moreover, unlike the monomer, the homodimer displayed apparent membrane-lytic activity enabling release of various sized dyes from liposomes, and rapidly and fully depolarized the S. aureus membrane. Together, our results suggest that homodimeric bactenecin forms pores in the bacterial membrane, while monomeric one penetrates through the membrane to target intracellular molecules/organelles.

A Database of Caenorhabditis elegans Locomotion and Body Posture Phenotypes for the Peripheral Neuropathy Model

  • Chung, Ki Wha;Kim, Ju Seong;Lee, Kyung Suk
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.880-888
    • /
    • 2020
  • Inherited peripheral neuropathy is a heterogeneous group of peripheral neurodegenerative disorders including Charcot-Marie-Tooth disease. Many peripheral neuropathies often accompany impaired axonal construction and function. To study the molecular and cellular basis of axon-defective peripheral neuropathy, we explore the possibility of using Caenorhabditis elegans, a powerful nematode model equipped with a variety of genetics and imaging tools. In search of potential candidates of C. elegans peripheral neuropathy models, we monitored the movement and the body posture patterns of 26 C. elegans strains with disruption of genes associated with various peripheral neuropathies and compiled a database of their phenotypes. Our assay showed that movement features of the worms with mutations in HSPB1, MFN2, DYNC1H1, and KIF1B human homologues are significantly different from the control strain, suggesting they are viable candidates for C. elegans peripheral neuropathy models.

NTAㆍNi2+-Functionalized Quantum Dots for VAMP2 Labeling in Live Cells

  • Yu, Mi-Kyung;Lee, Su-Ho;Chang, Sung-Hoe;Jon, Sang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1474-1478
    • /
    • 2010
  • An efficient method for labeling individual proteins in live cells is required for investigations into biological mechanisms and cellular processes. Here we describe the preparation of small quantum dots (QDs) that target membrane surface proteins bearing a hexahistidine-tag ($His_6$-tag) via specific binding to an nitrilotriacetic acid complex of nickel(II) ($NTA{\cdot}Ni^{2+}$) on the QD surfaces. We showed that the $NTA{\cdot}Ni^{2+}$-QDs bound to His-tag functionalized beads as a cellular mimic with high specificity and that QDs successfully targeted $His_6$-tagged vesicle-associated membrane proteins (VMAP) on cell surfaces. This strategy provides an efficient approach to monitoring synaptic protein dynamics in spatially restricted and confined biological environments.