References
- Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395 https://doi.org/10.1038/415389a
- Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
- Koczulla, A. R. and Bals, R. (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63, 389-406 https://doi.org/10.2165/00003495-200363040-00005
- Matsuzaki, K. (2008) Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta (in press)
- Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250 https://doi.org/10.1038/nrmicro1098
- Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27-55
- Papo, N. and Shai, Y. (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24, 1693-1703 https://doi.org/10.1016/j.peptides.2003.09.013
- Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236-248 https://doi.org/10.1002/bip.10260
- Cudic, M. and Otvos, L. Jr. (2002) Intracellular targets of antibacterial peptides. Curr. Drug Targets 3, 101-106 https://doi.org/10.2174/1389450024605445
- Yang, S. T., Shin, S. Y., Hahm, K. S. and Kim, J. I. (2006) Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim. Biophys. Acta 1758, 1580-1586 https://doi.org/10.1016/j.bbamem.2006.06.007
- Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R. and Scocchi, M. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760, 1732-1740 https://doi.org/10.1016/j.bbagen.2006.09.006
- Romeo, D., Skerlavaj, B., Bolognesi, M. and Gennaro, R. (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J .Biol. Chem. 263, 9573-9575
- Wu, M. and Hancock, R. E. W. (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274, 29-35 https://doi.org/10.1074/jbc.274.1.29
- Gennaro, R., Skerlavaj, B. and Romeo, D. (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 57, 3142-3146
- Wu, M. and Hancock, R. E. W. (1999) Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Antimicrob. Agents Chemother. 43, 1274-1276
- Storici, P., Tossi, A., Lenarcic, B. and Romeo, D. (1996) Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides. Eur. J. Biochem. 238, 769-776 https://doi.org/10.1111/j.1432-1033.1996.0769w.x
- Lee, J. Y., Yang, S. T., Lee, S. K., Jung, H. H., Shin, S. Y., Hahm, K. S. and Kim, J. I. (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J. 275, 3911-3920 https://doi.org/10.1111/j.1742-4658.2008.06536.x
- Wu, M., Maier, E., Benz, R. and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235-7242 https://doi.org/10.1021/bi9826299
- Lakoxicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York, USA
- Zelezetsky, I., Pontillo, A., Puzzi, L., Antcheva, N., Segat, L., Pacor, S., Crovella, S. and Tossi, A. (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J. Biol. Chem. 281, 19861-19871 https://doi.org/10.1074/jbc.M511108200
- Breukink, E., van Kraaij, C., van Dalen, A., Demel, R. A., Siezen, R. J., de Kruijff, B. and Kuipers, O. P. (1998) The orientation of nisin in membranes. Biochemistry 37, 8153-8162 https://doi.org/10.1021/bi972797l
- Zhao, H. and Kinnunen, P. K. (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J. Biol. Chem. 277, 25170-25177 https://doi.org/10.1074/jbc.M203186200
- Christiaens, B., Symoens, S., Verheyden, S., Engelborghs, Y., Joliot, A., Prochiantz, A., Vandekerckhove, J., Rosseneu, M. and Vanloo, B. (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem. 269, 2918-2926 https://doi.org/10.1046/j.1432-1033.2002.02963.x
- Zhu, W. L. and Shin, S. Y. (2009) Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J. Pept. Sci. 15, 345-352 https://doi.org/10.1002/psc.1120
- Zhu, W. L. and Shin, S. Y. (2009) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem. Biol. Drug Des. 73, 209-215 https://doi.org/10.1111/j.1747-0285.2008.00769.x
- Szoka, F. Jr. and Papahadjopoulos, D. (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. U.S.A. 75, 4194-4198 https://doi.org/10.1073/pnas.75.9.4194
Cited by
- Antimicrobial Action of the Cyclic Peptide Bactenecin on Burkholderia pseudomallei Correlates with Efficient Membrane Permeabilization vol.7, pp.6, 2013, https://doi.org/10.1371/journal.pntd.0002267
- Cathelicidins: family of antimicrobial peptides. A review vol.39, pp.12, 2012, https://doi.org/10.1007/s11033-012-1997-x
- Insect-derived short proline-rich and murine cathelicidin-related antimicrobial peptides act synergistically on Gram-negative bacteria in vitro vol.8, pp.10, 2016, https://doi.org/10.4155/fmc-2016-0083
- Fungicidal effect of isoquercitrin via inducing membrane disturbance vol.1848, pp.2, 2015, https://doi.org/10.1016/j.bbamem.2014.11.019
- Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris vol.47, pp.6, 2010, https://doi.org/10.1016/j.molimm.2009.12.007
- Silymarin exerts antifungal effects via membrane-targeted mode of action by increasing permeability and inducing oxidative stress vol.1859, pp.3, 2017, https://doi.org/10.1016/j.bbamem.2017.01.009
- Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides vol.44, pp.11, 2011, https://doi.org/10.5483/BMBRep.2011.44.11.747
- The Antimicrobial Activity of Sub3 is Dependent on Membrane Binding and Cell-Penetrating Ability vol.14, pp.15, 2013, https://doi.org/10.1002/cbic.201300274
- Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air–water interface vol.359, pp.1, 2011, https://doi.org/10.1016/j.jcis.2011.03.081
- Antimicrobial peptides isolated from the blood of farm animals vol.50, pp.7, 2010, https://doi.org/10.1071/EA07185